2,218 research outputs found

    Executive function in first-episode schizophrenia

    Get PDF
    BACKGROUND: We tested the hypothesis that schizophrenia is primarily a frontostriatal disorder by examining executive function in first-episode patients. Previous studies have shown either equal decrements in many cognitive domains or specific deficits in memory. Such studies have grouped test results or have used few executive measures, thus, possibly losing information. We, therefore, measured a range of executive ability with tests known to be sensitive to frontal lobe function. METHODS: Thirty first-episode schizophrenic patients and 30 normal volunteers, matched for age and NART IQ, were tested on computerized test of planning, spatial working memory and attentional set shifting from the Cambridge Automated Neuropsychological Test Battery. Computerized and traditional tests of memory were also administered for comparison. RESULTS: Patients were worse on all tests but the profile was non-uniform. A componential analysis indicated that the patients were characterized by a poor ability to think ahead and organize responses but an intact ability to switch attention and inhibit prepotent responses. Patients also demonstrated poor memory, especially for free recall of a story and associate learning of unrelated word pairs. CONCLUSIONS: In contradistinction to previous studies, schizophrenic patients do have profound executive impairments at the beginning of the illness. However, these concern planning and strategy use rather than attentional set shifting, which is generally unimpaired. Previous findings in more chronic patients, of severe attentional set shifting impairment, suggest that executive cognitive deficits are progressive during the course of schizophrenia. The finding of severe mnemonic impairment at first episode suggests that cognitive deficits are not restricted to one cognitive domain

    Low Dose Focused Ultrasound Induces Enhanced Tumor Accumulation of Natural Killer Cells

    Get PDF
    Natural killer (NK) cells play a vital antitumor role as part of the innate immune system. Efficacy of adoptive transfer of NK cells depends on their ability to recognize and target tumors. We investigated whether low dose focused ultrasound with microbubbles (ldbFUS) could facilitate the targeting and accumulation of NK cells in a mouse xenograft of human colorectal adenocarcinoma (carcinoembryonic antigen (CEA)-expressing LS-174T implanted in NOD.Cg-Prkdc^(scid)Il2rg^(tm1Wjl)/SzJ (NSG) mice) in the presence of an anti-CEA immunocytokine (ICK), hT84.66/M5A-IL-2 (M5A-IL-2). Human NK cells were labeled with an FDA-approved ultra-small superparamagnetic iron oxide particle, ferumoxytol. Simultaneous with the intravenous injection of microbubbles, focused ultrasound was applied to the tumor. In vivo longitudinal magnetic resonance imaging (MRI) identified enhanced accumulation of NK cells in the ensonified tumor, which was validated by endpoint histology. Significant accumulation of NK cells was observed up to 24 hrs at the tumor site when ensonified with 0.50 MPa peak acoustic pressure ldbFUS, whereas tumors treated with at 0.25 MPa showed no detectable NK cell accumulation. These clinically translatable results show that ldbFUS of the tumor mass can potentiate tumor homing of NK cells that can be evaluated non-invasively using MRI

    ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies

    Get PDF
    Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. Results: ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. Conclusion: A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI

    7T multi-shell hybrid diffusion imaging (HYDI) for mapping brain connectivity in mice

    Get PDF
    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. High angular resolution diffusion imaging (HARDI) samples diffusivity at a large number of spherical angles, to better resolve neural fibers that mix or cross. Here, we implemented a framework for advanced mathematical analysis of mouse 5-shell HARDI (b=1000, 3000, 4000, 8000, 12000 s/mm^2), also known as hybrid diffusion imaging (HYDI). Using q-ball imaging (QBI) at ultra-high field strength (7 Tesla), we computed diffusion and fiber orientation distribution functions (dODF, fODF) to better detect crossing fibers. We also computed a quantitative anisotropy (QA) index, and deterministic tractography, from the peak orientation of the fODFs. We found that the signal to noise ratio (SNR) of the QA was significantly higher in single and multi-shell reconstructed data at the lower b-values (b=1000, 3000, 4000 s/mm^2) than at higher b-values (b=8000, 12000 s/mm2); the b=1000 s/mm^2 shell increased the SNR of the QA in all multi-shell reconstructions, but when used alone or in <5-shell reconstruction, it led to higher angular error for the major fibers, compared to 5-shell HYDI. Multi-shell data reconstructed major fibers with less error than single-shell data, and was most successful at reducing the angular error when the lowest shell was excluded (b=1000 s/mm2). Overall, high-resolution connectivity mapping with 7T HYDI offers great potential for understanding unresolved changes in mouse models of brain disease

    Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus

    Get PDF
    Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad

    Low threshold edge emitting polymer distributed feedback laser based on a square lattice

    Get PDF
    Copyright © 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 86 (2005) and may be found at http://link.aip.org/link/?APPLAB/86/161102/1We report the demonstration of a low-threshold, edge-emitting polymer distributed feedback laser based on a square lattice. The lattice constant was 268 nm, which corresponds to a lattice line spacing in the ΓM symmetry direction of the Brillouin zone of 189 nm. The latter was employed to provide feedback at 630 nm via a first order diffraction process. The device operated on two longitudinal modes, which were situated on the band-edge near the M symmetry point. The two modes had thresholds of 0.66 nJ and 1.2 nJ—significantly lower than comparable surface-emitting DFB lasers. Angle dependent photoluminescence experiments were performed to investigate the effect of the square lattice on the laser operation and the origin of the low threshold

    The General Solution of Bianchi Type VIIhVII_h Vacuum Cosmology

    Full text link
    The theory of symmetries of systems of coupled, ordinary differential equations (ODE) is used to develop a concise algorithm in order to obtain the entire space of solutions to vacuum Bianchi Einstein Field Equations (EFEs). The symmetries used are the well known automorphisms of the Lie algebra for the corresponding isometry group of each Bianchi Type, as well as the scaling and the time re-parametrization symmetry. The application of the method to Type VII_h results in (a) obtaining the general solution of Type VII_0 with the aid of the third Painlev\'{e} transcendental (b) obtaining the general solution of Type VIIhVII_h with the aid of the sixth Painlev\'{e} transcendental (c) the recovery of all known solutions (six in total) without a prior assumption of any extra symmetry (d) The discovery of a new solution (the line element given in closed form) with a G_3 isometry group acting on T_3, i.e. on time-like hyper-surfaces, along with the emergence of the line element describing the flat vacuum Type VII_0 Bianchi Cosmology.Comment: latex2e source file, 27 pages, 2 tables, no fiure
    corecore