1,909 research outputs found

    NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)

    Get PDF
    Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy

    Gravitational Radiation from the Coalescence of Binary Neutron Stars: Effects Due to the Equation of State, Spin, and Mass Ratio

    Full text link
    We calculate the gravitational radiation produced by the coalescence of inspiraling binary neutron stars in the Newtonian regime using 3-dimensional numerical simulations. The stars are modeled as polytropes and start out in the point-mass regime at wide separation. The hydrodynamic integration is performed using smooth particle hydrodynamics (SPH) with Newtonian gravity, and the gravitational radiation is calculated using the quadrupole approximation. We have run a number of simulations varying the neutron star radii, equations of state, spins, and mass ratio. The resulting gravitational waveforms and spectra are rich in information about the hydrodynamics of coalescence, and show characteristic dependence on GM/Rc^2, the equation of state, and the mass ratio.Comment: 39 pages, uses Latex 2.09. To be published in the Dec. 15, 1996 issue of Physical Review D. 16 Figures (bitmapped). Originals available in compressed Postscript format at ftp://zonker.drexel.edu/papers/PAPER2

    Nonleptonic Λb\Lambda_b decays to Ds(2317)D_s(2317), Ds(2460)D_s(2460) and other final states in Factorization

    Full text link
    We consider nonleptonic Cabibbo--allowed Λb\Lambda_b decays in the factorization approximation. We calculate nonleptonic decays of the type Λb→ΛcP \Lambda_b \to \Lambda_c P and Λb→ΛcV \Lambda_b \to \Lambda_c V relative to Bˉd→D+P\bar{B}_d \to D^+ P and Bˉd→D+V\bar{B}_d \to D^+ V where we include among the pseudoscalar states(P) and the vector states(V) the newly discovered DsD_s resonances, Ds(2317)D_s(2317) and Ds(2460)D_s(2460). In the ratio of Λb\Lambda_b decays to Ds(2317)D_s(2317) and Ds(2460)D_s(2460) relative to the Bˉd\bar{B}_d decays to these states, the poorly known decay constants of Ds(2317)D_s(2317) and Ds(2460)D_s(2460) cancel leading to predictions that can shed light on the nature of these new states. In general, we predict the Λb\Lambda_b decays to be larger than the corresponding Bˉd\bar{B}_d decays and in particular we find the branching ratio for Λb→ΛcDs(2460)\Lambda_b \to \Lambda_c D_s(2460) can be between four to five times the branching ratio for Bˉd→D+Ds(2460)\bar{B}_d \to D^+ D_s(2460). This enhancement of Λb\Lambda_b branching ratios follows primarily from the fact that more partial waves contribute in Λb\Lambda_b decays than in Bˉd\bar{B}_d decays. Our predictions are largely independent of model calculations of hadronic inputs like form factors and decay constants.Comment: 16 pages LaTe

    Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope

    Get PDF
    Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332_(gp120) glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332_(gp120) glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18’s binding orientation provides additional contacts with N392_(gp120) and N386_(gp120) glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb–glycan interactions critical for using V3/N332_(gp120) bNAbs therapeutically and targeting their epitope for immunogen design

    Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope

    Get PDF
    Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332_(gp120) glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332_(gp120) glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18’s binding orientation provides additional contacts with N392_(gp120) and N386_(gp120) glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb–glycan interactions critical for using V3/N332_(gp120) bNAbs therapeutically and targeting their epitope for immunogen design
    • …
    corecore