2,487 research outputs found
To What Extent Does the Privilege against Self-Incrimination Protect a Witness against Forced Production of Documents
This comment is intended to be a companion piece to the Comment in Vanderbilt Law Review, Vol. I, No. 2, which discusses self-incrimination by means of physical disclosures. The preceding Comment gave a brief account of the privilege and pointed out that the Constitutions of the Federal Government and forty-six states have incorporated the common law privilege against self-incrimination. The two exceptions among the states, Iowa and New Jersey, have accepted the privilege, either by incorporation into their common law by judicial interpretation, or by statute. It is the purpose of this comment to discuss the possibility of the invocation of the privilege against self-incrimination by an individual who has been ordered by regular legal process to produce books, papers and other documents
On the origin of the absorption features in SS 433
We present high-resolution optical spectroscopy of the X-ray binary system SS 433, obtained over a wide range of orbital phases. The spectra display numerous weak absorption features, and include the clearest example seen to date of those features (resembling a mid-A type supergiant spectrum), which have previously been associated with the mass-donor star. However, the new data preclude the hypothesis that these features originate solely within the photosphere of the putative mass donor, indicating that there may be more than one region within the system producing an A supergiant-like spectrum, probably an accretion disc wind. Indeed, whilst we cannot confirm the possibility that the companion star is visible at certain phase combinations, it is possible that all supergiant-like features observed thus far are produced solely in a wind. We conclude that great care must be taken when interpreting the behaviour of these weak features
SS433:the microquasar link with ULXs?
SS433 is the prototype microquasar in the Galaxy and may even be analogous to
the ULX sources if the jets' kinetic energy is taken into account. However, in
spite of 20 years of study, our constraints on the nature of the binary system
are extremely limited as a result of the difficulty of locating spectral
features that can reveal the nature and motion of the mass donor. Newly
acquired, high resolution blue spectra taken when the (precessing) disc is
edge-on suggest that the binary is close to a common-envelope phase, and hence
providing kinematic constraints is extremely difficult. Nevertheless, we do
find evidence for a massive donor, as expected for the inferred very high mass
transfer rate, and we compare SS433's properties with those of Cyg X-3.Comment: 4 pages, 3 figures, to appear in "Compact binaries in the Galaxy and
beyond
Rotation periods of late-type stars in the young open cluster IC 2602
We present the results of a monitoring campaign aimed at deriving rotation
periods for a representative sample of stars in the young (30 Myr) open cluster
IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The
periods derived range from 0.2d (one of the shortest known rotation periods of
any single open cluster star) to about 10d (which is almost twice as long as
the longest period previously known for a cluster of this age). We are able to
confirm 8 previously known periods and derive 21 new ones, delineating the long
period end of the distribution. Despite our sensitivity to longer periods, we
do not detect any variables with periods longer than about 10d. The combination
of these data with those for IC 2391, an almost identical cluster, leads to the
following conclusions:
1) The fast rotators in a 30 Myr cluster are distributed across the entire
0.5 < B-V < 1.6 color range.
2) 6 stars in our sample are slow rotators, with periods longer than 6d.
3) The amplitude of variability depends on both the color and the period. The
dependence on the latter might be important in understanding the selection
effects in the currently available rotation period database and in planning
future observations.
4) The interpretation of these data in terms of theoretical models of
rotating stars suggests both that disk-interaction is the norm rather than the
exception in young stars and that disk-locking times range from zero to a few
Myr.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical
Journa
Changes in the Radiometric Sensitivity of SeaWiFS
We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date
NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)
Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy
Synthesis of the elements in stars: forty years of progress
Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B2FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments
- …