1,753 research outputs found

    Andreev Edge State on Semi-Infinite Triangular Lattice: Detecting the Pairing Symmetry in Na_0.35CoO_2.yH_2O

    Full text link
    We study the Andreev edge state on the semi-infinite triangular lattice with different pairing symmetries and boundary topologies. We find a rich phase diagram of zero energy Andreev edge states that is a unique fingerprint of each of the possible pairing symmetries. We propose to pin down the pairing symmetry in recently discovered Na_xCoO_2 material by the Fourier-transformed scanning tunneling spectroscopy for the edge state. A surprisingly rich phase diagram is found and explained by a general gauge argument and mapping to 1D tight-binding model. Extensions of this work are discussed at the end.Comment: 4 pages, 1 table, 4 figure

    Electromagnetic break-up of nuclei with A = 3 - 7

    Full text link
    This talk contains a short review of some of the progresses made in the last three years in the calculations of electromagnetic cross sections of light nuclei up to A=7. Since many of them have been possible thanks to the use of the Lorentz Integral Transform (LIT) method, both for inclusive and exclusive reactions, I will first make a few remarks on the method, stressing its essential points and then show results for different nuclei. One of the interesting outcomes is e.g. the appearing of typical collective motion features from ab initio six-body calculations. When a comparison with available experimental data is attempted, it is rather disappointing to realize that low-energy data are old, incomplete and not accurate enough to disantangle interesting effects, showing the need of a major experimental program in this direction, together with more theoretical efforts to implement modern realistic forces in continuum calculations of A≥4A\geq 4 systems.Comment: 4 pages, 7 figures, invited talk at the FB17 - Durham (N.C) June 5-10 200

    Longitudinal response function of 4He with a realistic force

    Full text link
    The longitudinal response function of 4He is calculated with the Argonne V18 potential. The comparison with experiment suggests the need of a three-body force. When adding the Urbana IX three-body potential in the calculation of the lower longitudinal multipoles, the total strength is suppressed in the quasi-elastic peak, towards the trend of the experimental data.Comment: 3 pages, 3 figures, proceedings of the 20th European Conference on Few-Body Problems in Physics (EFB20

    The effective interaction hyperspherical harmonics method for non-local potentials

    Full text link
    A different formulation of the effective interaction hyperspherical harmonics (EIHH) method, suitable for non-local potentials, is presented. The EIHH method for local interactions is first shortly reviewed to point out the problems of an extension to non-local potentials. A viable solution is proposed and, as an application, results on the ground-state properties of 4- and 6-nucleon systems are presented. One finds a substantial acceleration in the convergence rate of the hyperspherical harmonics series. Perspectives for an application to scattering cross sections, via the Lorentz transform method are discussed.Comment: 6 pages, 1 figure, to be published in the Proceedings of the International Nuclear Physics Conference, Vancouver, 201

    On the Accuracy of Hyperspherical Harmonics Approaches to Photonuclear Reactions

    Full text link
    Using the Lorentz Integral Transform (LIT) method we compare the results for the triton total photodisintegration cross section obtained using the Correlated Hyperspherical Harmonics (CHH) and the Effective Interaction Hyperspherical Harmonics (EIHH) techniques. We show that these two approaches, while rather different both conceptually and computationally, lead to results which coincide within high accuracy. The calculations which include two- and three-body forces are of the same high quality in both cases. We also discuss the comparison of the two approaches in terms of computational efficiency. These results are of major importance in view of applications to the much debated case of the four-nucleon photoabsorption.Comment: 12 pages, 3 figure

    Berry Phase in Cuprate Superconductors

    Full text link
    Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as they traverse closed cyclotron orbits in momentum space. The high-temperature cuprate superconductors are a class of materials where the Berry phase is thus far unknown despite the large body of existing quantum oscillations data. In this report we present a systematic Berry phase analysis of Shubnikov - de Haas measurements on the hole-doped cuprates YBa2_2Cu3_3Oy_{y}, YBa2_2Cu4_4O8_8, HgBa2_2CuO4+δ_{4 + \delta}, and the electron-doped cuprate Nd2−x_{2-x}Cex_xCuO4_4. For the hole-doped materials, a trivial Berry phase of 0 mod 2π2\pi is systematically observed whereas the electron-doped Nd2−x_{2-x}Cex_xCuO4_4 exhibits a significant non-zero Berry phase. These observations set constraints on the nature of the high-field normal state of the cuprates and points towards contrasting behaviour between hole-doped and electron-doped materials. We discuss this difference in light of recent developments related to charge density-wave and broken time-reversal symmetry states.Comment: new version with added supplementary informatio

    Effect of P-wave interaction in 6He and 6Li photoabsorption

    Full text link
    The total photoabsorption cross sections of six-body nuclei are calculated including complete final state interaction via the Lorentz Integral Transform method. The effect of nucleon-nucleon central P-wave forces is investigated. Comparing to results with central potentials containg S-wave forces only one finds considerably more strength in the low-energy cross sections and a rather strong improvement in comparison with experimental data, in particular for 6Li.Comment: 11 pages with 4 figure
    • …
    corecore