22 research outputs found
Resonance radiative decays as a tool for its parity determination
Radiative decays of the spin 1/2 baryonic resonances R with the decay mode R
-> KN in case of small energy release are considered. Pentaquark is an example
of such resonance. It is shown that in case of positive resonance parity
corrections to the soft photon radiation formula are large even at low photon
energies > 20 MeV and structure terms contributions may be essential, if R size
> 1 fm. This effect is absent in case of negative parity. Particularly,
measurements of the gamma spectrum in pentaquark radiative decays may allow us
to determine its parity.Comment: 5 page
The Evidence for a Pentaquark Signal and Kinematic Reflections
Several recent experiments have reported evidence for a narrow baryon
resonance with positive strangeness () at a mass of 1.54 GeV/.
Baryons with cannot be conventional states and the reports have
thus generated much theoretical speculation about the nature of possible
baryons, including a 5-quark, or pentaquark, interpretation. We show that
narrow enhancements in the effective mass spectrum can be generated as
kinematic reflections resulting from the decay of mesons, such as the
, the and the .Comment: 4 pages, 4 figure
The Chiral Soliton Model for Arbitrary Colors and Flavors
The quantum numbers of the chiral soliton are derived for an arbitrary number
of colors and flavors
Extraction of Kaon Formfactors from K^- -> mu^- nu_mu gamma Decay at ISTRA+ Setup
The radiative decay K->mu nu gamma has been studied at ISTRA+ setup in a new
kinematical region. About 22K events of K^- -> mu^- nu_mu gamma have been
observed. The sign and value of Fv-Fa have been measured for the first time.
The result is Fv-Fa=0.21(4)(4).Comment: 11 pages, 21 figures, submitted to Phys. Lett.
Pion-Muon Asymmetry Revisited
Long ago an unexpected and unexplainable phenomena was observed. The
distribution of muons from positive pion decay at rest was anisotropic with an
excess in the backward direction relative to the direction of the proton beam
from which the pions were created. Although this effect was observed by several
different groups with pions produced by different means, the result was not
accepted by the physics community, because it is in direct conflict with a
large set of other experiments indicating that the pion is a pseudoscalar
particle. It is possible to satisfy both sets of experiments if helicity-zero
vector particles exist and the pion is such a particle. Helicity-zero vector
particles have direction but no net spin. For the neutral pion to be a vector
particle requires an additional modification to conventional theory as
discussed herein. An experiment is proposed which can prove that the asymmetry
in the distribution of muons from pion decay is a genuine physical effect
because the asymmetry can be modified in a controllable manner. A positive
result will also prove that the pion is NOT a pseudoscalar particle.Comment: 9 pages, 3 figure
A Naturally Narrow Positive Parity Theta^+
We present a consistent color-flavor-spin-orbital wave function for a
positive parity Theta^+ that naturally explains the observed narrowness of the
state. The wave function is totally symmetric in its flavor-spin part and
totally antisymmetric in its color-orbital part. If flavor-spin interactions
dominate, this wave function renders the positive parity Theta^+ lighter than
its negative parity counterpart. We consider decays of the Theta^+ and compute
the overlap of this state with the kinematically allowed final states. Our
results are numerically small. We note that dynamical correlations between
quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be
published in Phys. Rev. D, includes numerical estimates of decay width
Z^* Resonances: Phenomenology and Models
We explore the phenomenology of, and models for, the Z^* resonances, the
lowest of which is now well established, and called the Theta. We provide an
overview of three models which have been proposed to explain its existence
and/or its small width, and point out other relevant predictions, and potential
problems, for each. The relation to what is known about KN scattering,
including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form
The theta^+ baryon in soliton models: large Nc QCD and the validity of rigid-rotor quantization
A light collective theta+ baryon state (with strangeness +1) was predicted
via rigid-rotor collective quantization of SU(3) chiral soliton models. This
paper explores the validity of this treatment. A number of rather general
analyses suggest that predictions of exotic baryon properties based on this
approximation do not follow from large Nc QCD. These include an analysis of the
baryon's width, a comparison of the predictions with general large Nc
consistency conditions of the Gervais-Sakita-Dashen-Manohar type; an
application of the technique to QCD in the limit where the quarks are heavy; a
comparison of this method with the vibration approach of Callan and Klebanov;
and the 1/Nc scaling of the excitation energy. It is suggested that the origin
of the problem lies in an implicit assumption in the that the collective motion
is orthogonal to vibrational motion. While true for non-exotic motion, the
Wess-Zumino term induces mixing at leading order between collective and
vibrational motion with exotic quantum numbers. This suggests that successful
phenomenological predictions of theta+ properties based on rigid-rotor
quantization were accidental.Comment: 19 pages; A shorter more readable versio