174 research outputs found

    Numerical Diagonalisation Study of the Trimer Deposition-Evaporation Model in One Dimension

    Get PDF
    We study the model of deposition-evaporation of trimers on a line recently introduced by Barma, Grynberg and Stinchcombe. The stochastic matrix of the model can be written in the form of the Hamiltonian of a quantum spin-1/2 chain with three-spin couplings given by H= \sum\displaylimits_i [(1 - \sigma_i^-\sigma_{i+1}^-\sigma_{i+2}^-) \sigma_i^+\sigma_{i+1}^+\sigma_{i+2}^+ + h.c]. We study by exact numerical diagonalization of HH the variation of the gap in the eigenvalue spectrum with the system size for rings of size up to 30. For the sector corresponding to the initial condition in which all sites are empty, we find that the gap vanishes as LzL^{-z} where the gap exponent zz is approximately 2.55±0.152.55\pm 0.15. This model is equivalent to an interfacial roughening model where the dynamical variables at each site are matrices. From our estimate for the gap exponent we conclude that the model belongs to a new universality class, distinct from that studied by Kardar, Parisi and Zhang.Comment: 11 pages, 2 figures (included

    Conservation Laws and Integrability of a One-dimensional Model of Diffusing Dimers

    Get PDF
    We study a model of assisted diffusion of hard-core particles on a line. The model shows strongly ergodicity breaking : configuration space breaks up into an exponentially large number of disconnected sectors. We determine this sector-decomposion exactly. Within each sector the model is reducible to the simple exclusion process, and is thus equivalent to the Heisenberg model and is fully integrable. We discuss additional symmetries of the equivalent quantum Hamiltonian which relate observables in different sectors. In some sectors, the long-time decay of correlation functions is qualitatively different from that of the simple exclusion process. These decays in different sectors are deduced from an exact mapping to a model of the diffusion of hard-core random walkers with conserved spins, and are also verified numerically. We also discuss some implications of the existence of an infinity of conservation laws for a hydrodynamic description.Comment: 39 pages, with 5 eps figures, to appear in J. Stat. Phys. (March 1997

    Dynamics of Shock Probes in Driven Diffusive Systems

    Get PDF
    We study the dynamics of shock-tracking probe particles in driven diffusive systems and also in equilibrium systems. In a driven system, they induce a diverging timescale that marks the crossover between a passive scalar regime at early times and a diffusive regime at late times; a scaling form characterises this crossover. Introduction of probes into an equilibrium system gives rise to a system-wide density gradient, and the presence of even a single probe can be felt across the entire system.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen

    Dynamics of Fluctuation Dominated Phase Ordering: Hard-core Passive Sliders on a Fluctuating Surface

    Get PDF
    We study the dynamics of a system of hard-core particles sliding downwards on a one dimensional fluctuating interface, which in a special case can be mapped to the problem of a passive scalar advected by a Burgers fluid. Driven by the surface fluctuations, the particles show a tendency to cluster, but the hard-core interaction prevents collapse. We use numerical simulations to measure the auto-correlation function in steady state and in the aging regime, and space-time correlation functions in steady state. We have also calculated these quantities analytically in a related surface model. The steady state auto-correlation is a scaling function of t/L^z, where L is the system size and z the dynamic exponent. Starting from a finite intercept, the scaling function decays with a cusp, in the small argument limit. The finite value of the intercept indicates the existence of long range order in the system. The space-time correlation, which is a function of r/L and t/L^z, is non-monotonic in t for fixed r. The aging auto-correlation is a scaling function of t_1 and t_2 where t_1 is the waiting time and t_2 the time difference. This scaling function decays as a power law for t_2 \gg t_1; for t_1 \gg t_2, it decays with a cusp as in steady state. To reconcile the occurrence of strong fluctuations in the steady state with the fact of an ordered state, we measured the distribution function of the length of the largest cluster. This shows that fluctuations never destroy ordering, but rather the system meanders from one ordered configuration to another on a relatively rapid time scale

    Orientational correlations and the effect of spatial gradients in the equilibrium steady state of hard rods in 2D : A study using deposition-evaporation kinetics

    Get PDF
    Deposition and evaporation of infinitely thin hard rods (needles) is studied in two dimensions using Monte Carlo simulations. The ratio of deposition to evaporation rates controls the equilibrium density of rods, and increasing it leads to an entropy-driven transition to a nematic phase in which both static and dynamical orientational correlation functions decay as power laws, with exponents varying continuously with deposition-evaporation rate ratio. Our results for the onset of the power-law phase agree with those for a conserved number of rods. At a coarse-grained level, the dynamics of the non-conserved angle field is described by the Edwards-Wilkinson equation. Predicted relations between the exponents of the quadrupolar and octupolar correlation functions are borne out by our numerical results. We explore the effects of spatial inhomogeneity in the deposition-evaporation ratio by simulations, entropy-based arguments and a study of the new terms introduced in the free energy. The primary effect is that needles tend to align along the local spatial gradient of the ratio. A uniform gradient thus induces a uniformly aligned state, as does a gradient which varies randomly in magnitude and sign, but acts only in one direction. Random variations of deposition-evaporation rates in both directions induce frustration, resulting in a state with glassy characteristics.Comment: modified version, Accepted for publication in Physical Review

    Drift and trapping in biased diffusion on disordered lattices

    Full text link
    We reexamine the theory of transition from drift to no-drift in biased diffusion on percolation networks. We argue that for the bias field B equal to the critical value B_c, the average velocity at large times t decreases to zero as 1/log(t). For B < B_c, the time required to reach the steady-state velocity diverges as exp(const/|B_c-B|). We propose an extrapolation form that describes the behavior of average velocity as a function of time at intermediate time scales. This form is found to have a very good agreement with the results of extensive Monte Carlo simulations on a 3-dimensional site-percolation network and moderate bias.Comment: 4 pages, RevTex, 3 figures, To appear in International Journal of Modern Physics C, vol.

    Driven k-mers: Correlations in space and time

    Full text link
    Steady state properties of hard objects with exclusion interaction and a driven motion along a one-dimensional periodic lattice are investigated. The process is a generalization of the asymmetric simple exclusion process (ASEP) to particles of length k, and is called the k-ASEP. Here, we analyze both static and dynamic properties of the k-ASEP. Density correlations are found to display interesting features, such as pronounced oscillations in both space and time, as a consequence of the extended length of the particles. At long times, the density autocorrelation decays exponentially in time, except at a special k-dependent density when it decays as a power law. In the limit of large k at a finite density of occupied sites, the appropriately scaled system reduces to a nonequilibrium generalization of the Tonks gas describing the motion of hard rods along a continuous line. This allows us to obtain in a simple way the known two-particle distribution for the Tonks gas. For large but finite k, we also obtain the leading-order correction to the Tonks result.Comment: 11 pages, 9 figures. Version 2: restructuring with small changes in content, published versio

    The Irreducible String and an Infinity of Additional Constants of Motion in a Deposition-Evaporation Model on a Line

    Get PDF
    We study a model of stochastic deposition-evaporation with recombination, of three species of dimers on a line. This model is a generalization of the model recently introduced by Barma {\it et. al.} (1993 {\it Phys. Rev. Lett.} {\bf 70} 1033) to q3q\ge 3 states per site. It has an infinite number of constants of motion, in addition to the infinity of conservation laws of the original model which are encoded as the conservation of the irreducible string. We determine the number of dynamically disconnected sectors and their sizes in this model exactly. Using the additional symmetry we construct a class of exact eigenvectors of the stochastic matrix. The autocorrelation function decays with different powers of tt in different sectors. We find that the spatial correlation function has an algebraic decay with exponent 3/2, in the sector corresponding to the initial state in which all sites are in the same state. The dynamical exponent is nontrivial in this sector, and we estimate it numerically by exact diagonalization of the stochastic matrix for small sizes. We find that in this case z=2.39±0.05z=2.39\pm0.05.Comment: Some minor errors in the first version has been correcte

    A complete devil's staircase in the Falicov-Kimball model

    Get PDF
    We consider the neutral, one-dimensional Falicov-Kimball model at zero temperature in the limit of a large electron--ion attractive potential, U. By calculating the general n-ion interaction terms to leading order in 1/U we argue that the ground-state of the model exhibits the behavior of a complete devil's staircase.Comment: 6 pages, RevTeX, 3 Postscript figure

    Driven Lattice Gases with Quenched Disorder: Exact Results and Different Macroscopic Regimes

    Full text link
    We study the effect of quenched spatial disorder on the steady states of driven systems of interacting particles. Two sorts of models are studied: disordered drop-push processes and their generalizations, and the disordered asymmetric simple exclusion process. We write down the exact steady-state measure, and consequently a number of physical quantities explicitly, for the drop-push dynamics in any dimensions for arbitrary disorder. We find that three qualitatively different regimes of behaviour are possible in 1-dd disordered driven systems. In the Vanishing-Current regime, the steady-state current approaches zero in the thermodynamic limit. A system with a non-zero current can either be in the Homogeneous regime, chracterized by a single macroscopic density, or the Segregated-Density regime, with macroscopic regions of different densities. We comment on certain important constraints to be taken care of in any field theory of disordered systems.Comment: RevTex, 17pages, 18 figures included using psfig.st
    corecore