16,331 research outputs found
Existence of a Meromorphic Extension of Spectral Zeta Functions on Fractals
We investigate the existence of the meromorphic extension of the spectral
zeta function of the Laplacian on self-similar fractals using the classical
results of Kigami and Lapidus (based on the renewal theory) and new results of
Hambly and Kajino based on the heat kernel estimates and other probabilistic
techniques. We also formulate conjectures which hold true in the examples that
have been analyzed in the existing literature
Optimizing information flow in small genetic networks. II: Feed forward interactions
Central to the functioning of a living cell is its ability to control the
readout or expression of information encoded in the genome. In many cases, a
single transcription factor protein activates or represses the expression of
many genes. As the concentration of the transcription factor varies, the target
genes thus undergo correlated changes, and this redundancy limits the ability
of the cell to transmit information about input signals. We explore how
interactions among the target genes can reduce this redundancy and optimize
information transmission. Our discussion builds on recent work [Tkacik et al,
Phys Rev E 80, 031920 (2009)], and there are connections to much earlier work
on the role of lateral inhibition in enhancing the efficiency of information
transmission in neural circuits; for simplicity we consider here the case where
the interactions have a feed forward structure, with no loops. Even with this
limitation, the networks that optimize information transmission have a
structure reminiscent of the networks found in real biological systems
Recommended from our members
Care Coordination as Imagined, Care Coordination as Done: Findings from a Cross-national Mental Health Systems Study
Introduction
Care coordination is intended to ensure needs are met and integrated services are provided. Formalised processes for the coordination of mental health care arrived in the UK with the introduction of the care programme approach in the early 1990s. Since then the care coordinator role has become a central one within mental health systems.
Theory and methods
This paper contrasts care coordination as work that is imagined with care coordination as work that is done. This is achieved via a critical review of policy followed by a qualitative analysis of interviews, focusing on day-to-day work, conducted with 28 care coordinators employed in four NHS organisations in England and two in Wales.
Findings
Care coordination is imagined as a vehicle for the provision of collaborative, recovery-focused, care. Those who practise care coordination are concerned with the quality of their relationships with service users and the tailoring of services, but limits exist to collaboration and open discussion. Care coordinators describe doing necessary work connecting people and the system of care. However, this work also brings significant administrative demands, is subject to performance management which distorts its primary purpose, and in a context of scarce resources promotes generic professional roles.
Conclusion
Care coordination must be done. However, it is not consistently being done in the way policymakers imagine, and in the real world of work can be done differently
Atomic and molecular interstellar absorption lines toward the high galactic latitude stars HD~141569 and HD~157841 at ultra-high resolution
We present ultra-high resolution (0.32 km/s) spectra obtained with the 3.9m
Anglo-Australian Telescope (AAT) and Ultra-High-Resolution Facility (UHRF), of
interstellar NaI D1, D2, Ca II K, K I and CH absorption toward two high
galactic latitude stars HD141569 and HD157841. We have compared our data with
21-cm observations obtained from the Leiden/Dwingeloo HI survey. We derive the
velocity structure, column densities of the clouds represented by the various
components and identify the clouds with ISM structures seen in the region at
other wavelengths. We further derive abundances, linear depletions and H2
fractional abundances for these clouds, wherever possible. Toward HD141569, we
detect two components in our UHRF spectra : a weak, broad component at - 15
km/s, seen only in CaII K absorption and another component at 0 km/s, seen in
NaI D1, D2, Ca II K, KI and CH absorption. In the case of the HD157841
sightline, a total of 6 components are seen on our UHRF spectra in NaI D1, D2
Ca II K, K I and CH absorption. 2 of these 6 components are seen only in a
single species.Comment: 16 pages, Latex, 4 figures, ps files Astrophysical Journal (in press
Optimizing information flow in small genetic networks. I
In order to survive, reproduce and (in multicellular organisms)
differentiate, cells must control the concentrations of the myriad different
proteins that are encoded in the genome. The precision of this control is
limited by the inevitable randomness of individual molecular events. Here we
explore how cells can maximize their control power in the presence of these
physical limits; formally, we solve the theoretical problem of maximizing the
information transferred from inputs to outputs when the number of available
molecules is held fixed. We start with the simplest version of the problem, in
which a single transcription factor protein controls the readout of one or more
genes by binding to DNA. We further simplify by assuming that this regulatory
network operates in steady state, that the noise is small relative to the
available dynamic range, and that the target genes do not interact. Even in
this simple limit, we find a surprisingly rich set of optimal solutions.
Importantly, for each locally optimal regulatory network, all parameters are
determined once the physical constraints on the number of available molecules
are specified. Although we are solving an over--simplified version of the
problem facing real cells, we see parallels between the structure of these
optimal solutions and the behavior of actual genetic regulatory networks.
Subsequent papers will discuss more complete versions of the problem
Entropy and information in neural spike trains: Progress on the sampling problem
The major problem in information theoretic analysis of neural responses and
other biological data is the reliable estimation of entropy--like quantities
from small samples. We apply a recently introduced Bayesian entropy estimator
to synthetic data inspired by experiments, and to real experimental spike
trains. The estimator performs admirably even very deep in the undersampled
regime, where other techniques fail. This opens new possibilities for the
information theoretic analysis of experiments, and may be of general interest
as an example of learning from limited data.Comment: 7 pages, 4 figures; referee suggested changes, accepted versio
Transition density of diffusion on Sierpinski gasket and extension of Flory's formula
Some problems related to the transition density u(t,x) of the diffusion on
the Sierpinski gasket are considerd, based on recent rigorous results and
detailed numerical calculations. The main contents are an extension of Flory's
formula for the end-to-end distance exponent of self-avoiding walks on the
fractal spaces, and an evidence of the oscillatory behavior of u(t,x) on the
Sierpinski gasket.Comment: 11 pages, REVTEX, 2 postscript figure
- …