15 research outputs found

    Discovery of selective Toxoplasma gondii dihydrofolate reductase inhibitors for the treatment of toxoplasmosis

    Get PDF
    A safer treatment for toxoplasmosis would be achieved by improving the selectivity and potency of dihydrofolate reductase (DHFR) inhibitors, such as pyrimethamine (1), for Toxoplasma gondii DHFR ( TgDHFR) relative to human DHFR ( hDHFR). We previously reported on the identification of meta-biphenyl analog 2, designed by in silico modeling of key differences in the binding pocket between TgDHFR and hDHFR. Compound 2 improves TgDHFR selectivity 6.6-fold and potency 16-fold relative to 1. Here, we report on the optimization and structure-activity relationships of this arylpiperazine series leading to the discovery of 5-(4-(3-(2-methoxypyrimidin-5-yl)phenyl)piperazin-1-yl)pyrimidine-2,4-diamine 3. Compound 3 has a TgDHFR I

    Impact of hands‐on care on infant sleep in the neonatal intensive care unit

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135460/1/ppul23513_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135460/2/ppul23513.pd

    Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Janus kinase (JAK) family of tyrosine kinases includes JAK1, JAK2, JAK3 and TYK2, and is required for signaling through Type I and Type II cytokine receptors. CP-690,550 is a potent and selective JAK inhibitor currently in clinical trials for rheumatoid arthritis (RA) and other autoimmune disease indications. In RA trials, dose-dependent decreases in neutrophil counts (PBNC) were observed with CP-690,550 treatment. These studies were undertaken to better understand the relationship between JAK selectivity and PBNC decreases observed with CP-690,550 treatment.</p> <p>Methods</p> <p>Potency and selectivity of CP-690,550 for mouse, rat and human JAKs was evaluated in a panel of <it>in vitro </it>assays. The effect of CP-690,550 on granulopoiesis from progenitor cells was also assessed <it>in vitro </it>using colony forming assays. <it>In vivo </it>the potency of orally administered CP-690,550 on arthritis (paw edema), plasma cytokines, PBNC and bone marrow differentials were evaluated in the rat adjuvant-induced arthritis (AIA) model.</p> <p>Results</p> <p>CP-690,550 potently inhibited signaling through JAK1 and JAK3 with 5-100 fold selectivity over JAK2 in cellular assays, despite inhibiting all four JAK isoforms with nM potency in <it>in vitro </it>enzyme assays. Dose-dependent inhibition of paw edema was observed <it>in vivo </it>with CP-690,550 treatment. Plasma cytokines (IL-6 and IL-17), PBNC, and bone marrow myeloid progenitor cells were elevated in the context of AIA disease. At efficacious exposures, CP-690,550 returned all of these parameters to pre-disease levels. The plasma concentration of CP-690,550 at efficacious doses was above the <it>in vitro </it>whole blood IC50 of JAK1 and JAK3 inhibition, but not that of JAK2.</p> <p>Conclusion</p> <p>Results from this investigation suggest that CP-690,550 is a potent inhibitor of JAK1 and JAK3 with potentially reduced cellular potency for JAK2. In rat AIA, as in the case of human RA, PBNC were decreased at efficacious exposures of CP-690,550. Inflammatory end points were similarly reduced, as judged by attenuation of paw edema and cytokines IL-6 and IL-17. Plasma concentration at these exposures was consistent with inhibition of JAK1 and JAK3 but not JAK2. Decreases in PBNC following CP-690,550 treatment may thus be related to attenuation of inflammation and are likely not due to suppression of granulopoiesis through JAK2 inhibition.</p

    Impact of indolent inflammation on neonatal hypoxic‐ischemic brain injury in mice

    No full text
    This report describes a new experimental model to evaluate the effect of a recurrent systemic inflammatory challenge, after cerebral hypoxia-ischemia in immature mice, on the progression of brain injury. Treatment with a low dose of lipopolysaccharide (E. coli O55:B5, 0.2 mg/kg for 3 days, then 0.1 mg/kg for 2 days) daily for 5 days after unilateral cerebral hypoxia-ischemia (right carotid ligation followed by 35 min in 10% O(2)) in 10-day-old mice resulted in increased right forebrain tissue damage (35.6% reduction in right hemisphere volume compared to 20.6% reduction in saline-injected controls), in bilateral reductions in corpus callosum area (by 12%) and myelin basic protein immunostaining (by 19%), and in suppression of injury-related right subventricular zone cellular proliferation. The post-hypoxic-ischemic lipopolysaccharide regimen that amplified brain injury was not associated with increased mortality, nor with changes in body temperature, weight gain or blood glucose concentrations. The results of the present study demonstrate that systemic inflammation influences the evolution of tissue injury after neonatal cerebral hypoxia-ischemia and may also impair potential recovery mechanisms

    Impact of indolent inflammation on neonatal hypoxicâ ischemic brain injury in mice

    Full text link
    This report describes a new experimental model to evaluate the effect of a recurrent systemic inflammatory challenge, after cerebral hypoxiaâ ischemia in immature mice, on the progression of brain injury. Treatment with a low dose of lipopolysaccharide (E. coli O55:B5, 0.2 mg/kg for 3 days, then 0.1 mg/kg for 2 days) daily for 5 days after unilateral cerebral hypoxiaâ ischemia (right carotid ligation followed by 35 min in 10% O2) in 10â dayâ old mice resulted in increased right forebrain tissue damage (35.6% reduction in right hemisphere volume compared to 20.6% reduction in salineâ injected controls), in bilateral reductions in corpus callosum area (by 12%) and myelin basic protein immunostaining (by 19%), and in suppression of injuryâ related right subventricular zone cellular proliferation. The postâ hypoxicâ ischemic lipopolysaccharide regimen that amplified brain injury was not associated with increased mortality, nor with changes in body temperature, weight gain or blood glucose concentrations. The results of the present study demonstrate that systemic inflammation influences the evolution of tissue injury after neonatal cerebral hypoxiaâ ischemia and may also impair potential recovery mechanisms.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152966/1/jdnjijdevneu200708005.pd

    Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression In Vitro

    Get PDF
    Cryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium. We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and help illuminate growth differences between various culture platforms.Among the obstacles hindering Cryptosporidium research is the lack of an in vitro culture system that supports complete life development and propagation. This major barrier has led to a shortage of widely available anti-Cryptosporidium antibodies and a lack of markers for staging developmental progression. Previously developed antibodies against Cryptosporidium were raised against extracellular stages or recombinant proteins, leading to antibodies with limited reactivity across the parasite life cycle. Here we sought to create antibodies that recognize novel epitopes that could be used to define intracellular development. We identified a mouse epithelial cell line that supported C. parvum growth, enabling immunization of mice with infected cells to create a bank of monoclonal antibodies (MAbs) against intracellular parasite stages while avoiding the development of host-specific antibodies. From this bank, we identified 12 antibodies with a range of reactivities across the parasite life cycle. Importantly, we identified specific MAbs that can distinguish different life cycle stages, such as trophozoites, merozoites, type I versus II meronts, and macrogamonts. These MAbs provide valuable tools for the Cryptosporidium research community and will facilitate future investigation into parasite biology

    Optimizing Small Molecule Inhibitors of Calcium-Dependent Protein Kinase 1 to Prevent Infection by Toxoplasma gondii

    No full text
    Toxoplasma gondii is sensitive to bulky pyrazolo [3,4-<i>d</i>] pyrimidine (PP) inhibitors due to the presence of a Gly gatekeeper in the essential calcium dependent protein kinase 1 (CDPK1). Here we synthesized a number of new derivatives of 3-methyl-benzyl-PP (3-MB-PP, or <b>1</b>). The potency of PP analogues in inhibiting CDPK1 enzyme activity in vitro (low nM IC<sub>50</sub> values) and blocking parasite growth in host cell monolayers in vivo (low ÎźM EC<sub>50</sub> values) were highly correlated and occurred in a CDPK1-specific manner. Chemical modification of the PP scaffold to increase half-life in the presence of microsomes in vitro led to identification of compounds with enhanced stability while retaining activity. Several of these more potent compounds were able to prevent lethal infection with T. gondii in the mouse model. Collectively, the strategies outlined here provide a route for development of more effective compounds for treatment of toxoplasmosis and perhaps related parasitic diseases
    corecore