26 research outputs found

    Risk of Recurrent Arterial Ischemic Stroke in Childhood: A Prospective International Study.

    Get PDF
    Background and purposePublished cohorts of children with arterial ischemic stroke (AIS) in the 1990s to early 2000s reported 5-year cumulative recurrence rates approaching 20%. Since then, utilization of antithrombotic agents for secondary stroke prevention in children has increased. We sought to determine rates and predictors of recurrent stroke in the current era.MethodsThe Vascular Effects of Infection in Pediatric Stroke (VIPS) study enrolled 355 children with AIS at 37 international centers from 2009 to 2014 and followed them prospectively for recurrent stroke. Index and recurrent strokes underwent central review and confirmation, as well as central classification of causes of stroke, including arteriopathies. Other predictors were measured via parental interview or chart review.ResultsOf the 355 children, 354 survived their acute index stroke, and 308 (87%) were treated with an antithrombotic medication. During a median follow-up of 2.0 years (interquartile range, 1.0-3.0), 40 children had a recurrent AIS, and none had a hemorrhagic stroke. The cumulative stroke recurrence rate was 6.8% (95% confidence interval, 4.6%-10%) at 1 month and 12% (8.5%-15%) at 1 year. The sole predictor of recurrence was the presence of an arteriopathy, which increased the risk of recurrence 5-fold when compared with an idiopathic AIS (hazard ratio, 5.0; 95% confidence interval, 1.8-14). The 1-year recurrence rate was 32% (95% confidence interval, 18%-51%) for moyamoya, 25% (12%-48%) for transient cerebral arteriopathy, and 19% (8.5%-40%) for arterial dissection.ConclusionsChildren with AIS, particularly those with arteriopathy, remain at high risk for recurrent AIS despite increased utilization of antithrombotic agents. Therapies directed at the arteriopathies themselves are needed

    CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development

    Get PDF
    Charged multivesicular body protein 1A (CHMP1A; also known as chromatin-modifying protein 1A) is a member of the ESCRT-III (endosomal sorting complex required for transport-III) complex but is also suggested to localize to the nuclear matrix and regulate chromatin structure. Here, we show that loss-of-function mutations in human CHMP1A cause reduced cerebellar size (pontocerebellar hypoplasia) and reduced cerebral cortical size (microcephaly). CHMP1A-mutant cells show impaired proliferation, with increased expression of INK4A, a negative regulator of stem cell proliferation. Chromatin immunoprecipitation suggests loss of the normal INK4A repression by BMI in these cells. Morpholino-based knockdown of zebrafish chmp1a resulted in brain defects resembling those seen after bmi1a and bmi1b knockdown, which were partially rescued by INK4A ortholog knockdown, further supporting links between CHMP1A and BMI1-mediated regulation of INK4A. Our results suggest that CHMP1A serves as a critical link between cytoplasmic signals and BMI1-mediated chromatin modifications that regulate proliferation of central nervous system progenitor cells

    Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia

    Full text link
    Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia, a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study, therefore, deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders

    Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy.

    No full text
    BackgroundErythropoietin is neuroprotective in animal models of neonatal hypoxic-ischemic encephalopathy. We previously reported a phase I safety and pharmacokinetic study of erythropoietin in neonates. This article presents the neurodevelopmental follow-up of infants who were enrolled in the phase I clinical trial.MethodsWe enrolled 24 newborns with hypoxic-ischemic encephalopathy in a dose-escalation study. Patients received up to six doses of erythropoietin in addition to hypothermia. All infants underwent neonatal brain magnetic resonance imaging (MRI) reviewed by a single neuroradiologist. Moderate-to-severe neurodevelopmental disability was defined as cerebral palsy with Gross Motor Function Classification System levels III-V or cognitive impairment based on Bayley Scales of Infant Development II mental developmental index or Bayley III cognitive composite score.ResultsOutcomes were available for 22 of 24 infants, at mean age 22 months (range, 8-34 months). There were no deaths. Eight (36%) had moderate-to-severe brain injury on neonatal MRI. Moderate-to-severe disability occurred in one child (4.5%), in the setting of moderate-to-severe basal ganglia and/or thalamic injury. Seven infants with moderate-to-severe watershed injury exhibited the following outcomes: normal (three), mild language delay (two), mild hemiplegic cerebral palsy (one), and epilepsy (one). All 11 patients with a normal brain MRI had a normal outcome.ConclusionsThis study is the first to describe neurodevelopmental outcomes in infants who received high doses of erythropoietin and hypothermia during the neonatal period. The findings suggest that future studies are warranted to assess the efficacy of this new potential neuroprotective therapy
    corecore