63 research outputs found
Supersonic strain front driven by a dense electron-hole plasma
We study coherent strain in (001) Ge generated by an ultrafast
laser-initiated high density electron-hole plasma. The resultant coherent pulse
is probed by time-resolved x-ray diffraction through changes in the anomalous
transmission. The acoustic pulse front is driven by ambipolar diffusion of the
electron-hole plasma and propagates into the crystal at supersonic speeds.
Simulations of the strain including electron-phonon coupling, modified by
carrier diffusion and Auger recombination, are in good agreement with the
observed dynamics.Comment: 4 pages, 6 figure
All Optical Implementation of Multi-Spin Entanglement in a Semiconductor Quantum Well
We use ultrafast optical pulses and coherent techniques to create spin
entangled states of non-interacting electrons bound to donors (at least three)
and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the
exchange interaction between localized excitons and paramagnetic impurities,
can in principle be applied to entangle a large number of spins.Comment: 17 pages, 3 figure
Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots
We report on the impulsive generation of coherent optical phonons in
CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe
experiments using femtosecond laser pulses were performed by tuning the laser
central energy to resonate with the absorption edge of the nanocrystals. We
identify two longitudinal optical phonons, one longitudinal acoustic phonon and
a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the
optical phonons as a function of the laser central energy exhibits a resonance
that is well described by a model based on impulsive stimulated Raman
scattering. The phases of the coherent phonons reveal coupling between
different modes. At low power density excitations, the frequency of the optical
coherent phonons deviates from values obtained from spontaneous Raman
scattering. This behavior is ascribed to the presence of electronic impurity
states which modify the nanocrystal dielectric function and, thereby, the
frequency of the infrared-active phonons
- …