870 research outputs found

    Hysteresis and noise in ferromagnetic materials with parallel domain walls

    Full text link
    We investigate dynamic hysteresis and Barkhausen noise in ferromagnetic materials with a huge number of parallel and rigid Bloch domain walls. Considering a disordered ferromagnetic system with strong in-plane uniaxial anisotropy and in-plane magnetization driven by an external magnetic field, we calculate the equations of motion for a set of coupled domain walls, considering the effects of the long-range dipolar interactions and disorder. We derive analytically an expression for the magnetic susceptivity, related to the effective demagnetizing factor, and show that it has a logarithmic dependence on the number of domains. Next, we simulate the equations of motion and study the effect of the external field frequency and the disorder on the hysteresis and noise properties. The dynamic hysteresis is very well explained by means of the loss separation theory.Comment: 13 pages, 11 figure

    The German Inflation Trauma

    Get PDF
    The notion of a nation-specific inflation trauma among the German population is ubiquitous in the public debate in Germany and beyond. Because of its experience with hyperinflation in 1923, the German population fears rising prices and favors stability-oriented monetary as well as fiscal policy. It is less clear, however, whether this contemporary understanding of the German inflation trauma is as old as its historical point of reference. The majority of the literature presumes that such a traumatic disposition has persisted since 1923 and has been transposed intergenerationally (persistence thesis). Others, however, point to an ex-ante reconstruction of past experiences (reconstruction thesis). By employing an interdisciplinary approach of methodological triangulation drawing on both methods of history and political sciences, we provide new insights on the question of origin. Specifically, we examine the remembrance of hyperinflation in personal memoirs and the German Bundestag in regard to the monetary and fiscal policy lessons connected to memories of 1923. Doing so, we find support for the logic of reconstruction. We show that the hyperinflation was not remembered unambiguously, and that memories were not immediately linked to specific policy lessons. Only from the 1980s onwards, a process of discursive alignment occurred that mirrors the contemporary understanding of the inflation trauma. By providing this insight, our paper allows to better understand the historical origins of today’s popular memory and its political uses.Not Reviewe

    Mechanism for nonequilibrium symmetry breaking and pattern formation in magnetic films

    Full text link
    Magnetic thin films exhibit a strong variation in properties depending on their degree of disorder. Recent coherent x-ray speckle experiments on magnetic films have measured the loss of correlation between configurations at opposite fields and at the same field, upon repeated field cycling. We perform finite temperature numerical simulations on these systems that provide a comprehensive explanation for the experimental results. The simulations demonstrate, in accordance with experiments, that the memory of configurations increases with film disorder. We find that non-trivial microscopic differences exist between the zero field spin configuration obtained by starting from a large positive field and the zero field configuration starting at a large negative field. This seemingly paradoxical beahvior is due to the nature of the vector spin dynamics and is also seen in the experiments. For low disorder, there is an instability which causes the spontaneous growth of line-like domains at a critical field, also in accord with experiments. It is this unstable growth, which is highly sensitive to thermal noise, that is responsible for the small correlation between patterns under repeated cycling. The domain patterns, hysteresis loops, and memory properties of our simulated systems match remarkably well with the real experimental systems.Comment: 12 pages, 10 figures Added comparison of results with cond-mat/0412461 and some more discussio

    Effects of Domain Wall on Electronic Transport Properties in Mesoscopic Wire of Metallic Ferromagnets

    Full text link
    We study the effect of the domain wall on electronic transport properties in wire of ferromagnetic 3dd transition metals based on the linear response theory. We considered the exchange interaction between the conduction electron and the magnetization, taking into account the scattering by impurities as well. The effective electron-wall interaction is derived by use of a local gauge transformation in the spin space. This interaction is treated perturbatively to the second order. The conductivity contribution within the classical (Boltzmann) transport theory turns out to be negligiblly small in bulk magnets, due to a large thickness of the wall compared with the fermi wavelength. It can be, however, significant in ballistic nanocontacts, as indicated in recent experiments. We also discuss the quantum correction in disordered case where the quantum coherence among electrons becomes important. In such case of weak localization the wall can contribute to a decrease of resistivity by causing dephasing. At lower temperature this effect grows and can win over the classical contribution, in particular in wire of diameter L⊥≲ℓϕL_{\perp}\lesssim \ell_{\phi}, ℓϕ\ell_{\phi} being the inelastic diffusion length. Conductance change of the quantum origin caused by the motion of the wall is also discussed.Comment: 30 pages, 4 figures. Detailed paper of Phys. Rev. Lett. 78, 3773 (1997). Submitted to J. Phys. Soc. Jp

    Spin Precession and Avalanches

    Full text link
    In many magnetic materials, spin dynamics at short times are dominated by precessional motion as damping is relatively small. In the limit of no damping and no thermal noise, we show that for a large enough initial instability, an avalanche can transition to an ergodic phase where the state is equivalent to one at finite temperature, often above that for ferromagnetic ordering. This dynamical nucleation phenomenon is analyzed theoretically. For small finite damping the high temperature growth front becomes spread out over a large region. The implications for real materials are discussed.Comment: 4 pages 2 figure

    Hysteresis multicycles in nanomagnet arrays

    Full text link
    We predict two new physical effects in arrays of single-domain nanomagnets by performing simulations using a realistic model Hamiltonian and physical parameters. First, we find hysteretic multicycles for such nanomagnets. The simulation uses continuous spin dynamics through the Landau-Lifshitz-Gilbert (LLG) equation. In some regions of parameter space, the probability of finding a multicycle is as high as ~0.6. We find that systems with larger and more anisotropic nanomagnets tend to display more multicycles. This result demonstrates the importance of disorder and frustration for multicycle behavior. We also show that there is a fundamental difference between the more realistic vector LLG equation and scalar models of hysteresis, such as Ising models. In the latter case, spin and external field inversion symmetry is obeyed but in the former it is destroyed by the dynamics, with important experimental implications.Comment: 7 pages, 2 figure

    Ising Dynamics with Damping

    Full text link
    We show for the Ising model that is possible construct a discrete time stochastic model analogous to the Langevin equation that incorporates an arbitrary amount of damping. It is shown to give the correct equilibrium statistics and is then used to investigate nonequilibrium phenomena, in particular, magnetic avalanches. The value of damping can greatly alter the shape of hysteresis loops, and for small damping and high disorder, the morphology of large avalanches can be drastically effected. Small damping also alters the size distribution of avalanches at criticality.Comment: 8 pages, 8 figures, 2 colum
    • …
    corecore