339 research outputs found

    A CCD search for distant satellites of asteroids 3 Juno and 146 Lucina

    Get PDF
    The results of CCD searches for satellites of asteroids 146 Lucina and 3 Juno are reported. Juno is one of the largest asteroids (D = 244 km); no previous deep imaging search for satellites around it has been reported. A potential occultation detection of a small satellite orbiting 146 Lucina (D = 137 km) km was reported by Arlot et al. (1985), but has not been confirmed. Using the 2.1 m reflector at McDonald Observatory in 1990 and 1991 with a CCD camera equipped with a 2.7 arc-sec radius occulting disk, limiting magnitudes of m(sub R) = 19.5 and m(sub R) = 21.4 were achieved around these two asteroids. This corresponds to objects of 1.6 km radius at Juno's albedo and distance, and 0.6 km radius at Lucina's albedo and distance. No satellite detections were made. Unless satellites were located behind our occultation mask, these two asteroids do not have satellites larger than the radii given above

    Physical observations of comets: Their composition, origin and evolution

    Get PDF
    Observations of Comet P/Schwassmann-Wachmann 1 (SW1) during one observing run each in 1989 and 1990 are discussed, and the new significant information that was obtained is presented. Also discussed are near-UV observations of comets. The near-UV is a mostly unexplored spectral region for comets since it is not visible to spacecraft such as IUE and most ground-based detectors and spectrographs are not sensitive in the near-UV

    Physical observations of comets: Their composition, origin and evolution

    Get PDF
    The composition, origins, and evolution of comets were studied. The composition was studied using spectroscopic observations of primarily brighter comets at moderate and high resolution for the distribution of certain gases in the coma. The origins was addressed through an imaging search for the Kuiper belt of comets. The evolution was addressed by searching for a link between comets and asteroids using an imaging approach to search for an OH coma

    GEO Population Estimates using Optical Survey Data

    Get PDF
    Optical survey data taken using the NASA Michigan Orbital Debris Survey Telescope (MODEST) gives us an opportunity to statistically sample faint object population in the Geosynchronous (GEO) and near-GEO environment. This paper will summarize the MODEST survey work that has been conducted by NASA since 2002, and will outline the techniques employed to arrive at the current population estimates in the GEO environment for dim objects difficult to detect and track using current systems in the Space Surveillance Network (SSN). Some types of orbits have a higher detection rate based on what parts of the GEO belt is being observed, a straightforward statistical technique is used to debias these observations to arrive at an estimate of the total population potentially visible to the telescope. The size and magnitude distributions of these fainter debris objects are markedly different from the catalogued population. GEO debris consists of at least two different populations, one which follows the standard breakup power law and one which has anomalously high Area-to-Mass Ratios (1 to approx. 30 square meters per kilogram; a sheet of paper = approx. 13 square meters per kilogram). The Inter-Agency Space Debris Coordination Committee (IADC) is investigating objects in GEO orbits with anomalously high Area-to-Mass Ratios (AMRs). The ESA Space Debris Telescope discovered this population and has and its properties of inclinations (0 to 30 degrees), changing eccentricities (0 and 0.6), and mean motions (approx. 1 rev), will be presented. The accepted interpretation of this orbital behavior is that solar radiation pressure drives the perturbations causing time varying inclinations and eccentricities. The orbital parameters are unstable for this population and thus difficult to predict. Their dim visual magnitudes and photometric variability make observations a challenge. The IADC has enlisted a series of observatories (participating institutions: University of Michigan/CTIO, Astronomical Institute University of Bern, Boeing LTS / AMOS, Keldysh Institute of Applied Mathematics) at different longitudes. Complete observational coverage over periods of days to months will provide a better understanding of the properties, such as solar radiation pressure effects on orbital elements, size, shape, attitude, color variations, and spectral characteristics. Results from recent observational programs will be summarized, and includes a description of the orbit elements prediction processes, a summary of the metric tracking performance, and some photometric characteristics of this class of debris

    Optical Properties of Multi-Layered Insulation

    Get PDF
    Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms, which is due to the copper color of Kapton. If the debris is MLI and the outer layer of copper coloring of Kapton is present, evidence would be seen spectrally by the specific absorption feature as well as using R-B (red-blue) light curves. Using laboratory photometric measurements and the results from spectral laboratory measurements, an optical property database is provided for an object with a high A/m. The benefits of this database for remote optical measurements of orbital debris are shown by illustrating the optical properties expected for a high A/m object, specifically common satellite and rocket body MLI

    Remote and Ground Truth Spectral Measurement Comparisons of FORMOSAT III

    Get PDF
    FORMOSAT III are a set of six research satellites from Taiwan that were launched in April 2006. The satellites are in 800 km, 71 degree inclination orbits and separated by 24 degrees in ascending node. Laboratory spectral measurements were taken of outer surface materials on FORMOSAT III. From those measurements, a computer model was built to predict the spectral reflectance accounting for both solar phase angle and orientation of the spacecraft relative to the observer. However, materials exposed to the space environment have exhibited spectral changes including a darkening and a "reddening" of the spectra. This "reddening" is characterized by an increase in slope of the reflectance as the wavelength increases. Therefore, the model of pre-flight materials was augmented to include the presumed causative agent: space weathering effects. Remote data were collected on two of the six FORMOSAT satellites using the 1.6 meter telescope at the AMOS (Air Force Maui Optical and Supercomputing) site with the Spica spectrometer. Due to the separation in ascending node, observations were acquired of whichever one of the six satellites was visible on that specific night. Three nights of data were collected using the red (6000 - 9500 angstroms) filter and five nights of data were collected using the blue (3200 - 6600 angstroms) filter. A comparison of the data showed a good match to the pre-flight models for the blue filter region. The absorption feature near 5500 angstroms due to the copper colored Kapton multi-layer insulation (MLI) was very apparent in the remote samples and a good fit to the data was seen in all satellites observed. The features in the red filter regime agreed with the pre-flight model up through 7000 angstroms where the reddening begins and the slope of the remote sample increases. A comparison of the satellites showed similar features in the red and blue filter regions, i.e. the satellite surfaces were aging at the same rate. A comparison of the pre-flight model to the first month of remote measurements showed the amount by which the satellite had reddened. The second month of data observed a satellite at a higher altitude and was therefore, not compared to the first month. A third month of data was collected but of satellites at the lower altitude regime and can only be compared to the first month. One cause of the reddening that was ruled out in early papers was a possible calibration issue

    Comparisons of Ground Truth and Remote Spectral Measurements of the FORMOSAT and ANDE Spacecrafts

    Get PDF
    Determining the material type of objects in space is conducted using laboratory spectral reflectance measurements from common spacecraft materials and comparing the results to remote spectra. This past year, two different ground-truth studies commenced. The first, FORMOSAT III, is a Taiwanese set of six satellites to be launched in March 2006. The second is ANDE (Atmospheric Neutral Density Experiment), a Naval Research Laboratory set of two satellites set to launch from the Space Shuttle in November 2006. Laboratory spectra were obtained of the spacecraft and a model of the anticipated spectra response was created for each set of satellites. The model takes into account phase angle and orientation of the spacecraft relative to the observer. Once launched, the spacecraft are observed once a month to determine the space aging effects of materials as deduced from the remote spectra. Preliminary results will be shown of the FORMOSAT III comparison with laboratory data and remote data while results from only the laboratory data will be shown for the ANDE spacecraft

    Placing the Deep Impact Mission into Context: Two Decades of Observations of 9P/Tempel 1 from McDonald Observatory

    Full text link
    We report on low-spectral resolution observations of comet 9P/Tempel 1 from 1983, 1989, 1994 and 2005 using the 2.7m Harlan J. Smith telescope of McDonald Observatory. This comet was the target of NASA's Deep Impact mission and our observations allowed us to characterize the comet prior to the impact. We found that the comet showed a decrease in gas production from 1983 to 2005, with the the decrease being different factors for different species. OH decreased by a factor 2.7, NH by 1.7, CN by 1.6, C3_{3} by 1.8, CH by 1.4 and C2_{2} by 1.3. Despite the decrease in overall gas production and these slightly different decrease factors, we find that the gas production rates of OH, NH, C3_{3}, CH and C2_{2} ratioed to that of CN were constant over all of the apparitions. We saw no change in the production rate ratios after the impact. We found that the peak gas production occurred about two months prior to perihelion. Comet Tempel 1 is a "normal" comet.Comment: Accepted for publication in Icarus. 21 total manuscript pages including 8 tables and 4 figure

    Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    Get PDF
    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future
    • …
    corecore