173 research outputs found

    Reviews

    Get PDF
    Managing Change in Higher Education: A Learning Environment Architecture by Peter Ford and eight other authors, Buckingham: Society for Research into Higher Education and the Open University Press, 1996. ISBN 0–335–19791–4. 161 pages, paperback. No price indicated

    The burden of disease and injury in Aboriginal and Torres Strait Islander peoples 2003

    Get PDF
    This report provides the first comprehensive assessment of the burden of disease of Indigenous Australians. Fatal and non-fatal outcomes are combined, but can be examined separately as well. This report provides details of the extent of premature mortality and disability estimated for over 170 disease and injury categories and for Aboriginal and Torres Strait Islander peoples living in remote and non-remote areas of Australia. Burden of disease analysis gives a unique perspective on health. Fatal and non-fatal outcomes are combined, but can be examined separately as well. This report provides details of the extent of premature mortality and disability estimated for over 170 disease and injury categories and for Aboriginal and Torres Strait Islander peoples living in remote and non-remote areas of Australia. It also presents estimates of the amount of disease and injury caused by 11 major risk factors. More importantly, it measures the Indigenous Health Gap, which is the difference between the observed burden of disease in Indigenous Australians and what it would have been if the same rates of burden of disease as in the total Australian population would have applied. This is of major policy interest. The diseases and risk factors that contribute most to the Indigenous Health Gap are identified as health areas where appropriately resourced health services, combined with interventions to address the social and economic disadvantages faced by Indigenous Australians, are likely to have the greatest impact on reducing the burden of disease

    ChIP-Seq and In Vivo Transcriptome Analyses of the Aspergillus fumigatus SREBP SrbA Reveals a New Regulator of the Fungal Hypoxia Response and Virulence

    Get PDF
    The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs\u27 complex role in infection site adaptation and fungal virulence

    The burden of disease and injury in Australia 2003

    Full text link
    The report measures mortality, disability, illness and injury arising from over 170 diseases and injuries. Burden of disease analysis gives a unique perspective on healt

    Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aspergillus fumigatus </it>is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, <it>A. fumigatus </it>must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of <it>A. fumigatus </it>and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of <it>A. fumigatus </it>hypoxia adaptation are poorly understood. Thus, to better understand how <it>A. fumigatus </it>adapts to hypoxic microenvironments found <it>in vivo </it>during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system.</p> <p>Results</p> <p>Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R<sup>2 </sup>= 0.2, p < 0.05) existed between the transcriptomic and proteomics datasets for all time points. The lack of correlation between some transcript levels and their subsequent protein levels suggests another regulatory layer of the hypoxia response in <it>A. fumigatus</it>.</p> <p>Conclusions</p> <p>Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold <it>A. fumigatus</it>. As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major components of the hypoxia response in this pathogenic mold. In addition, a significant induction of the transcripts involved in ergosterol biosynthesis is consistent with previous observations in the pathogenic yeasts <it>Candida albicans </it>and <it>Cryptococcus neoformans </it>indicating conservation of this response to hypoxia in pathogenic fungi. Because ergosterol biosynthesis enzymes also require iron as a co-factor, the increase in iron uptake transcripts is consistent with an increased need for iron under hypoxia. However, unlike <it>C. albicans </it>and <it>C. neoformans</it>, the GABA shunt appears to play an important role in reducing NADH levels in response to hypoxia in <it>A. fumigatus </it>and it will be intriguing to determine whether this is critical for fungal virulence. Overall, regulatory mechanisms of the <it>A. fumigatus </it>hypoxia response appear to involve both transcriptional and post-transcriptional control of transcript and protein levels and thus provide candidate genes for future analysis of their role in hypoxia adaptation and fungal virulence.</p

    Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond

    Get PDF
    The risks associated with airborne soil particles (dust) are often underappreciated, and the gap between the knowledge pool and public awareness can be costly for society. This study reviews the emission, chemical, physical, and biological characteristics of dust and its effects on human and environmental health and safety in the Americas. American dust originates from both local sources and long-range transport from Africa and Asia. Dust properties, trends and interactions with criteria air pollutants are summarized. Human exposure to dust has been associated with adverse health effects, including asthma, fungal infections, and premature death. One of the most striking effects of dust is Coccidioidomycosis(Valley fever), an infection caused by inhaling soil-dwelling fungi unique to this region. Dust affects environmental health through providing nutrients to phytoplankton, contaminating water supply and food, spreading crop and marine pathogens, infecting domestic and wild animals, transporting heavy metals and radionuclides, and reducing solar power generation. Dust is also a well-documented safety hazard to road transportation, aviation, and marine navigation, in particular in the southwestern United States where blowingdust is one of the deadliest weather hazards. To mitigate these harmful effects,coordinated regional and international efforts are needed to enhance dust observations and prediction capabilities (especially in South America), implement soil conservation measures, design specific dust mitigation projects for trans-portation, and conduct surveillance for Valley fever and other diseases. While focusing on the Americas, many of the dust effects found in this region also exist in other parts of the world

    Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever.

    Get PDF
    UnlabelledCoccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region.ImportanceCoccidioidomycosis, or valley fever, is caused by the pathogenic fungi Coccidioides posadasii and C. immitis The fungal species and disease are primarily found in the American desert southwest, with spotted distribution throughout the Western Hemisphere. Initial molecular studies suggested a likely anthropogenic movement of C. posadasii from North America to South America. Here we comparatively analyze eighty-six genomes of the two Coccidioides species and establish local and species-wide population structures to not only clarify the earlier dispersal hypothesis but also provide evidence of likely ancestral populations and patterns of dispersal for the known subpopulations of C. posadasii
    corecore