20 research outputs found

    Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape

    Get PDF
    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.National Institutes of Health (U.S.) (Common Fund 5UL1DE019581)National Institutes of Health (U.S.) (Common Fund RL1DE019021)National Institutes of Health (U.S.) (Common Fund 5TL1EB008540)National Institutes of Health (U.S.) (Grant 1U01HG007037)National Institutes of Health (U.S.) (Grant 5P01NS055923

    CD24 — a novel ‘don’t eat me’ signal

    No full text

    Cas9 Functionally Opens Chromatin

    No full text
    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding

    dCas9 chromatin opening enables adjacent RAR binding and RA-dependent gene activation.

    No full text
    <p><b>a</b>. Anti-retinoic acid receptor (RAR) ChIP followed by qPCR at three loci (RAR1-3, x-axis) in the presence of sgRNAs targeting each locus (blue, red, and green). ChIP-qPCR values are normalized to the average of two of the strongest genomic RAR binding sites. Three replicates were performed for all experiments, and a two-tailed Student’s t-test was used to calculate significance, and values with P<0.01 are denoted with a *. <b>b.</b> The Tol2 transposon-based reporter system involves stable integration of a 2x RAR motif, a minimal promoter, and GFP. dCas9 was recruited through sgRNA sequences upstream (sgRAR Up, red) or downstream (sgRAR Down, blue) of the 2x RAR motif. <b>c</b>. Average flow cytometric GFP induction by RA in the presence of control sgRNA (black), sgRAR Up (red), or sgRAR Down (blue) sgRNAs. <b>d</b>. dCas9 is able to bind to sgRNA sequences in inaccessible chromatin and induce accessibility, which directly enables the settler factor RAR to bind to previously obscured motifs.</p

    dCas9 induces chromatin accessibility at previously inaccessible genomic loci.

    No full text
    <p><b>a</b>. mESCs were co-transfected with a Tol2 transposase (TPase), a Tol2 transposon-flanked dCas9 expression cassette, and a Tol2 transposon-flanked sgRNA cassette to yield stable expression of dCas9 and a sgRNA targeted to a region with inaccessible chromatin. <b>b</b>. 16/16 loci in previously inaccessible chromatin had statistically significant increases in DNase hypersensitivity (y-axis) upon sgRNA targeting as measured by DNase-qPCR (gray dots). DNase hypersensitivity at each locus is normalized to its level in the absence of sgRNA (blue dot), and the average normalized DNase hypersensitivity in the presence of gRNA for all loci is shown (red dot), which is statistically significantly increased over–sgRNA control. At least two replicates were performed for all conditions, and a two-tailed Student’s t-test used to calculate significance. <b>c</b>. DNase-qPCR measurement of DNase hypersensitivity (y-axis) is shown +/-150 bp from the sgRNA site (x-axis) at four targeted loci. DNase-qPCR values at each datapoint are normalized to hypersensitivity in the absence of sgRNA, and all loci are oriented such that the 20 bp sgRNA sequence is immediately to the left of 0 and the NGG PAM sequence is immediately to the right of 0. Three replicates were performed for all experiments.</p
    corecore