427 research outputs found

    Maximizing flow rate in single paper layer, rapid flow microfluidic paper-based analytical devices

    Get PDF
    UNLABELLED: Small, single-layer microfluidic paper-based analytical devices (µPADs) offer potential for a range of point-of-care applications; however, they have been limited to low flow rates. Here, we investigate the role of laser cutting paper channels in maximizing flow rate in small profile devices with limited fluid volumes. We demonstrate that branching, laser-cut grooves can provide a 59.23-73.98% improvement in flow rate over a single cut, and a 435% increase over paper alone. These design considerations can be applied to more complex microfluidic devices with the aim of increasing the flow rate, and could be used in stand-alone channels for self-pumping. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10404-023-02679-8

    Electronic reconstruction at the polar (111)- oriented oxide interface

    Get PDF
    Atomically flat (111) interfaces between insulating perovskite oxides provide a landscape for new electronic phenomena. For example, the graphene-like coordination between interfacial metallic ion layer pairs can lead to topologically protected states [Xiao et al., Nat. Commun. 2, 596 (2011) and A. Rüegg and G. A. Fiete, Phys. Rev. B 84, 201103 (2011)]. The metallic ion/metal oxide bilayers that comprise the unit cell of the perovskite (111) heterostructures require the interface to be polar, generating an intrinsic polar discontinuity [Chakhalian et al., Nat. Mater. 11, 92 (2012)]. Here, we investigate epitaxial heterostructures of (111)-oriented LaAlO3/SrTiO3 (LAO/STO). We find that during heterostructure growth, the LAO overlayer eliminates the structural reconstruction of the STO (111) surface with an electronic reconstruction, which determines the properties of the resulting two-dimensional conducting gas. This is confirmed by transport measurements, direct determination of the structure and atomic charge from coherent Bragg rod analysis, and theoretical calculations of electronic and structural characteristics. Interfacial behaviors of the kind discussed here may lead to new growth control parameters useful for electronic devices

    Risk management frameworks:Supporting the next generation of Murray-Darling Basin water sharing plans

    Get PDF
    Water jurisdictions in Australia are required to prepare and implement water resource plans. In developing these plans the common goal is realising the best possible use of the water resources-maximising outcomes while minimising negative impacts. This requires managing the risks associated with assessing and balancing cultural, industrial, agricultural, social and environmental demands for water within a competitive and resource-limited environment. Recognising this, conformance to international risk management principles (ISO 31000:2009) have been embedded within the Murray-Darling Basin Plan. Yet, to date, there has been little strategic investment by water jurisdictions in bridging the gap between principle and practice. The ISO 31000 principles and the risk management framework that embodies them align well with an adaptive management paradigm within which to conduct water resource planning. They also provide an integrative framework for the development of workflows that link risk analysis with risk evaluation and mitigation (adaptation) scenarios, providing a transparent, repeatable and robust platform. This study, through a demonstration use case and a series of workflows, demonstrates to policy makers how these principles can be used to support the development of the next generation of water sharing plans in 2019. The workflows consider the uncertainty associated with climate and flow inputs, and model parameters on irrigation and hydropower production, meeting environmental flow objectives and recreational use of the water resource. The results provide insights to the risks associated with meeting a range of different objectives

    Multi-gap superconductivity in a BaFe1.84Co0.16As2 film from optical measurements at terahertz frequencies

    Full text link
    We measured the THz reflectance properties of a high quality epitaxial thin film of the Fe-based superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 with Tc_c=22.5 K. The film was grown by pulsed laser deposition on a DyScO3_3 substrate with an epitaxial SrTiO3_3 intermediate layer. The measured RS/RNR_S/R_N spectrum, i.e. the reflectivity ratio between the superconducting and normal state reflectance, provides clear evidence of a superconducting gap ΔA\Delta_A close to 15 cm1^{-1}. A detailed data analysis shows that a two-band, two-gap model is absolutely necessary to obtain a good description of the measured RS/RNR_S/R_N spectrum. The low-energy ΔA\Delta_A gap results to be well determined (ΔA\Delta_A=15.5±\pm0.5 cm1^{-1}), while the value of the high-energy gap ΔB\Delta_B is more uncertain (ΔB\Delta_B=55±\pm7 cm1^{-1}). Our results provide evidence of a nodeless isotropic double-gap scenario, with the presence of two optical gaps corresponding to 2Δ/kTc\Delta/kT_c values close to 2 and 7.Comment: Published Versio

    Patient expectations of fair complaint handling in hospitals: empirical data

    Get PDF
    BACKGROUND: A common finding in several studies is patients' dissatisfaction with complaint handling in health care. The reasons why are for the greater part unknown. The key to an answer may be found in a better understanding of patients' expectations. We investigated patients' expectations of complaint handling in hospitals. METHODS: Subjects were patients who had lodged a complaint at the complaint committees of 74 hospitals in the Netherlands. A total of 424 patients (response 75%) completed a written questionnaire at the start of the complaint procedures. Derived from justice theory, we asked what they expected from fair procedures, fair communication and fair outcome of complaint handling. RESULTS: The predominant reason for complainants to lodge a complaint was to prevent the incident from happening again. Complainants expected fair procedures from the complaint committee, in particular an impartial position. This was most important to 87% of the complainants. They also expected to be treated respectfully. Furthermore, they expected the hospital and the professional involved to respond to their complaint. A change in hospital performances was the most wanted outcome of complaint handling, according to 79% of the complainants. They also expected disclosure from the professionals. Professionals should admit a mistake when it had occurred. More complainants (65%) considered it most important to get an explanation than an apology (41%). Only 32% of complainants expected the professional to make an effort to restore the doctor-patient relationship. A minority of complainants (7%) wanted financial compensation. CONCLUSION: Nearly all complainants want to prevent the incident from happening again, not out of pure altruism, but in order to restore their sense of justice. We conclude that complaint handling that does not allow for change is unlikely to meet patients' expectations. Secondly, complaint handling should not be left exclusively to complaint committees, the responses of hospital and professionals are indispensable

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
    corecore