29 research outputs found

    FNDC5 is produced in the stomach and associated to body composition

    Get PDF
    The fibronectin type III domain-containing protein 5 (FNDC5) discovered in 2002 has recently gained attention due to its potential role in protecting against obesity. In rat, no data exist regarding FNDC5 production and regulation in the stomach. The aim of the present work was to determine the expression of FNDC5 in the rat stomach and its potential regulation by body composition. The present data shows FNDC5 gene expression in the gastric mucosa. Immunohistochemical studies found FNDC5 immunopositivity in chief cells of gastric tissue. By the use of three different antibodies FNDC5 was found expressed in gastric mucosa and secreted by the stomach. The rate of gastric FNDC5 secretion parallels the circulating levels of FNDC5. The body fat mass increase after intervention with high fat diet coincided with a decrease in the secretion of FNDC5 from the stomach and a diminution in the FNDC5 circulating levels. In summary, the present data shows, for the first time, the expression of FNDC5 in the stomach of rats and its regulation by body composition, suggesting a potential role of gastric FNDC5 in energy homeostasishis work has been supported by grants from Instituto de Salud Carlos III (PI1202021 and PI15/01272) cofounded by FEDER, Xunta de Galicia (10 PXIB 918 273PR) and Fundación Mutua Madrileña. SB-F is funded by Xunta de Galicia and Universidade de Santiago de Compostela, CF by IDIS (Instituto de Investigación Sanitaria de Santiago de Compostela), CC by Ciber obn and OA-M is funded by the ISCIII/SERGAS thought a research contract “Sara Borrell” (CD14/00091). MP is funded by ISCIII/SERGAS through a research contract “Miguel Servet II”. LMS is a SERGAS-I3SNS researcher. Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn) is a iniciative of the Instituto de Salud Carlos III (ISCIII) of Spain which is supported by FEDER fundsS

    ANGPTL-4 is associated with obesity and lipid profile in children and adolescents

    Get PDF
    Angiopoietin-like protein 4 (ANGPTL-4) regulates lipidic metabolism and a_ects energy homeostasis. However, its function in children with obesity remains unknown. We investigated plasma ANGPTL-4 levels in children and its relationship with body mass index (BMI) and di_erent lipidic parameters such as free fatty acids (FFA). Plasma ANGPTL-4 levels were analyzed in two di_erent cohorts. In the first cohort (n = 150, age 3-17 years), which included children with normal weight or obesity, we performed a cross-sectional study. In the second cohort, which included only children with obesity (n = 20, age 5-18 years) followed up for two years after an intervention for weight loss, in which we performed a longitudinal study measuring ANGPTL-4 before and after BMI-loss. In the cross-sectional study, circulating ANGPTL-4 levels were lower in children with obesity than in those with normal weight. Moreover, ANGPTL-4 presented a negative correlation with BMI, waist circumference, weight, insulin, homeostasis model assessment of insulin resistance index (HOMA index), triglycerides, and leptin, and a positive correlation with FFA and vitamin-D. In the longitudinal study, the percent change in plasma ANGPTL-4 was correlated with the percent change in FFA, total-cholesterol and high-density lipoprotein cholesterol. This study reveals a significant association of ANGPTL-4 with pediatric obesity and plasma lipid profile

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Genome Sequences of the High-Acetic Acid-Resistant Bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (Reference Strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (Isolated from Vinegar) ▿

    No full text
    Bacteria of the genus Gluconacetobacter are usually involved in the industrial production of vinegars with high acetic acid concentrations. We describe here the genome sequence of three Gluconacetobacter europaeus strains, a very common bacterial species from industrial fermentors, as well as of a Gluconacetobacter oboediens strain
    corecore