70 research outputs found
Targeting the DNA damage response to overcome cancer drug resistance in glioblastoma
Glioblastoma multiforme (GBM) is one of the most recalcitrant brain tumors characterized by a tumor microenvironment (TME) that strongly supports GBM growth, aggressiveness, invasiveness, and resistance to therapy. Importantly, a common feature of GBM is the aberrant activation of receptor tyrosine kinases (RTKs) and of their downstream signaling cascade, including the non-receptor tyrosine kinase SRC. SRC is a central downstream intermediate of many RTKs, which triggers the phosphorylation of many substrates, therefore, promoting the regulation of a wide range of different pathways involved in cell survival, adhesion, proliferation, motility, and angiogenesis. In addition to the aforementioned pathways, SRC constitutive activity promotes and sustains inflammation and metabolic reprogramming concurring with TME development, therefore, actively sustaining tumor growth. Here, we aim to provide an updated picture of the molecular pathways that link SRC to these events in GBM. In addition, SRC targeting strategies are discussed in order to highlight strengths and weaknesses of SRC inhibitors in GBM management, focusing our attention on their potentialities in combination with conventional therapeutic approaches (i.e., temozolomide) to ameliorate therapy effectiveness
Targeting the DNA damage response to overcome cancer drug resistance in glioblastoma
Glioblastoma multiforme (GBM) is one of the most recalcitrant brain tumors characterized by a tumor microenvironment (TME) that strongly supports GBM growth, aggressiveness, invasiveness, and resistance to therapy. Importantly, a common feature of GBM is the aberrant activation of receptor tyrosine kinases (RTKs) and of their downstream signaling cascade, including the non-receptor tyrosine kinase SRC. SRC is a central downstream intermediate of many RTKs, which triggers the phosphorylation of many substrates, therefore, promoting the regulation of a wide range of different pathways involved in cell survival, adhesion, proliferation, motility, and angiogenesis. In addition to the aforementioned pathways, SRC constitutive activity promotes and sustains inflammation and metabolic reprogramming concurring with TME development, therefore, actively sustaining tumor growth. Here, we aim to provide an updated picture of the molecular pathways that link SRC to these events in GBM. In addition, SRC targeting strategies are discussed in order to highlight strengths and weaknesses of SRC inhibitors in GBM management, focusing our attention on their potentialities in combination with conventional therapeutic approaches (i.e., temozolomide) to ameliorate therapy effectiveness
SRC kinase in glioblastoma: news from an old acquaintance
Glioblastoma multiforme (GBM) is one of the most recalcitrant brain tumors characterized by a tumor microenvironment (TME) that strongly supports GBM growth, aggressiveness, invasiveness, and resistance to therapy. Importantly, a common feature of GBM is the aberrant activation of receptor tyrosine kinases (RTKs) and of their downstream signaling cascade, including the non-receptor tyrosine kinase SRC. SRC is a central downstream intermediate of many RTKs, which triggers the phosphorylation of many substrates, therefore, promoting the regulation of a wide range of different pathways involved in cell survival, adhesion, proliferation, motility, and angiogenesis. In addition to the aforementioned pathways, SRC constitutive activity promotes and sustains inflammation and metabolic reprogramming concurring with TME development, therefore, actively sustaining tumor growth. Here, we aim to provide an updated picture of the molecular pathways that link SRC to these events in GBM. In addition, SRC targeting strategies are discussed in order to highlight strengths and weaknesses of SRC inhibitors in GBM management, focusing our attention on their potentialities in combination with conventional therapeutic approaches (i.e., temozolomide) to ameliorate therapy effectiveness
mTOR inhibition leads to SRC-mediated EGFR internalisation and degradation in glioma cells
Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration
mTOR inhibition leads to SRC-mediated EGFR internalisation and degradation in glioma cells
Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration
A real-life study of daratumumab-bortezomib-dexamethasone (D-VD) in lenalidomide exposed/refractory multiple myeloma patients: a report from the Triveneto Myeloma Working Group
Treatment of lenalidomide refractory (Len-R) multiple myeloma (MM) patients still represents an unmet clinical need. In the last years, daratumumab-bortezomib-dexamethasone (D-VD) combination was extensively used in this setting, even though only a small fraction of Len-R patients was included in the pivotal trial. This real-life study aimed to evaluate the efficacy and safety of the D-VD regimen in a cohort that exclusively enrolled Len exposed or refractory MM patients. The study cohort included 57 patients affected by relapsed/refractory MM. All patients were previously exposed to Len, with 77.2% being refractory. The overall response rate (ORR) was 79.6% with 43% of cases obtaining at least a very good partial response (VGPR). The D-VD regimen showed a favorable safety profile, with low frequency of grade 3–4 adverse events, except for thrombocytopenia observed in 21.4% of patients. With a median follow-up of 13 months, median progression-free survival (PFS) was 17 months. No significant PFS differences were observed according to age, ISS, LDH levels, type of relapse, and high-risk FISH. Len exposed patients displayed a PFS advantage as compared to Len refractory patients (29 vs 16 months, p = 0.2876). Similarly, patients treated after Len maintenance showed a better outcome as compared to patients who had received a full-dose Len treatment (23 vs 13 months, p = 0.1728). In conclusion, our real-world data on D-VD combination showed remarkable efficacy in Len-R patients, placing this regimen as one of the standards of care to be properly taken into account in this MM setting
Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells
Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation
The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury
10.1371/journal.pone.0075483PLoS ONE810-POLN
Transitional Care for Patients with Congenital Colorectal Diseases: An EUPSA Network Office, ERNICA, and eUROGEN Joint Venture
Background: Transition of care (TOC; from childhood into adulthood) of patients with anorectal malformations (ARM) and Hirschsprung disease (HD) ensures continuation of care for these patients. The aim of this international study was to assess the current status of TOC and adult care (AC) programs for patients with ARM and HD. Methods: A survey was developed by members of EUPSA, ERN eUROGEN, and ERNICA, including patient representatives (ePAGs), comprising of four domains: general information, general questions about transition to adulthood, and disease-specific questions regarding TOC and AC programs. Recruitment of centres was done by the ERNs and EUPSA, using mailing lists and social media accounts. Only descriptive statistics were reported. Results: In total, 82 centres from 21 different countries entered the survey. Approximately half of them were ERN network members. Seventy-two centres (87.8%) had a self-reported area of expertise for both ARM and HD. Specific TOC programs were installed in 44% of the centres and AC programs in 31% of these centres. When comparing centres, wide variation was observed in the content of the programs. Conclusion: Despite the awareness of the importance of TOC and AC programs, these programs were installed in less than 50% of the participating centres. Various transition and AC programs were applied, with considerable heterogeneity in implementation, content and responsible caregivers involved. Sharing best practice examples and taking into account local and National Health Care Programs might lead to a better continuation of care in the future. Level of Evidence: III
- …