480 research outputs found

    Probing Internal Stress and Crystallinity in Wet Foam via Raman Spectroscopy

    Full text link
    In this article, we correlate the internal stress and the characteristics of a vibrational mode in wet foam. Using microscope images, we estimate the average size of the bubbles in wet foam, at specific time intervals, over a duration of twenty four hours. Raman spectra are also recorded at the same time intervals, over the same time frame. We show that the internal stress, originated from the macroscopic structural change of foam with ageing, can be related to the observed Raman shift of the low frequency methylene rocking mode of the constituent surfactant molecules in foam. In this report we also show the capability of the Raman spectroscopy to reveal the crystallinity in foamy materials, when studied for a longer period of time.Comment: 16 pages, 7 figure

    Escape rate from a metastable state weakly interacting with a heat bath driven by an external noise

    Full text link
    Based on a system-reservoir model, where the reservoir is driven by an external stationary, Gaussian noise with arbitrary decaying correlation function, we study the escape rate from a metastable state in the energy diffusion regime. For the open system we derive the Fokker-Planck equation in the energy space and subsequently calculate the generalized non-Markovian escape rate from a metastable well in the energy diffusion domain. By considering the dynamics in a model cubic potential we show that the results obtained from numerical simulation are in good agreement with the theoretical prediction. It has been also shown numerically that the well known turnover feature can be restored from our model.Comment: 11 pages, 2 figure

    Decuplet Baryon Structure from Lattice QCD

    Full text link
    The electromagnetic properties of the SU(3)-flavor baryon decuplet are examined within a lattice simulation of quenched QCD. Electric charge radii, magnetic moments, and magnetic radii are extracted from the E0 and M1 form factors. Preliminary results for the E2 and M3 moments are presented giving the first model independent insight to the shape of the quark distribution in the baryon ground state. As in our octet baryon analysis, the lattice results give evidence of spin-dependent forces and mass effects in the electromagnetic properties. The quark charge distribution radii indicate these effects act in opposing directions. Some baryon dependence of the effective quark magnetic moments is seen. However, this dependence in decuplet baryons is more subtle than that for octet baryons. Of particular interest are the lattice predictions for the magnetic moments of Ω\Omega^- and Δ++\Delta^{++} for which new recent experimental measurements are available. The lattice prediction of the Δ++/p\Delta^{++}/p ratio appears larger than the experimental ratio, while the lattice prediction for the Ω/p\Omega^-/p magnetic moment ratio is in good agreement with the experimental ratio.Comment: RevTeX manuscript, 34 pages plus 21 figures (available upon request

    An African-specific haplotype in MRGPRX4 is associated with menthol cigarette smoking

    Get PDF
    In the U.S., more than 80% of African-American smokers use mentholated cigarettes, compared to less than 30% of Caucasian smokers. The reasons for these differences are not well understood. To determine if genetic variation contributes to mentholated cigarette smoking, we performed an exome-wide association analysis in a multiethnic population-based sample from Dallas, TX (N = 561). Findings were replicated in an independent cohort of African Americans from Washington, DC (N = 741). We identified a haplotype of MRGPRX4 (composed of rs7102322[G], encoding N245S, and rs61733596[G], T43T), that was associated with a 5-to-8 fold increase in the odds of menthol cigarette smoking. The variants are present solely in persons of African ancestry. Functional studies indicated that the variant G protein-coupled receptor encoded by MRGPRX4 displays reduced agonism in both arrestin-based and G protein-based assays, and alteration of agonism by menthol. These data indicate that genetic variation in MRGPRX4 contributes to inter-individual and inter-ethnic differences in the preference for mentholated cigarettes, and that the existence of genetic factors predisposing vulnerable populations to mentholated cigarette smoking can inform tobacco control and public health policies

    Dynamo Simulations of Jupiter's Magnetic Field: The Role of Stable Stratification and a Dilute Core

    Get PDF
    Understanding Jupiter's present-day interior structure and dynamics is key to constraining planetary accretion models. In particular, the extent of stable stratification (i.e., non-convective regions) in the planet strongly influences long-term cooling processes, and may record primordial heavy element gradients from early in a planet's formation. Because the Galileo entry probe measured a subsolar helium abundance, Jupiter interior models often invoke an outer stably stratified region due to helium rain. Additionally, Juno gravity data suggest a deeper, potentially stratified dilute core extending halfway through the planet. However, fits to Jupiter's gravitational data are non-unique, and outstanding uncertainty over the equations of state for hydrogen and helium remain. Here, we use high-resolution numerical magnetohydrodynamic simulations of Jupiter's magnetic field to place constraints on the extent of stable stratification within the planet. We find that compared to traditional interior models, an upper stably stratified layer between 0.9 and 0.95 Jupiter radii (RJ) helps to explain both Jupiter's dipolar magnetic field and zonal winds. In contrast, an extended dilute core that is entirely stably stratified (no convective layers) yields significantly worse fits to both. However, our models with extended deep stratification still generate dipolar magnetic fields if an upper stratified region is also present. Overall, we find that a planet with a dilute core i.e., strongly stably stratified is increasingly challenging to reconcile with Jupiter's magnetic field and winds. Thus if a dilute core is present, alternative modalities such as a fully convective dilute core, a complex multilayered interior structure, or double diffusive convection may be required

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.
    corecore