718 research outputs found
Assessment of heavy metals in the surrounding soils and their bioconcentrations in few plants near Kathajodi river, Odisha, India
The present study was carried out mainly concentrate on assessment of heavy metal in the surrounding soils and their bioconcentration in the different plants near Kathajodi River. Soil and plant samples were collected along the Kathajodi river, Odisha, India. It was found that the dominance of heavy metals follows a decreasing order. The metal concentrations measured in soil at all location generally decreased in the order; Fe > Mn > Ni> Pb> Cu> Zn> Cd. Highest heavy metal concentration in river bank soil Cd (0.72±0.05 mgkg-1); Ni (3.85±0.15 mgkg-1); Cu (1.66±0.15 mgkg-1); Zn (1.54±0.16 mgkg-1); Pb (4.11±0.14 mgkg-1); Fe (142.0±1.16 mgkg-1); Mn (37.30±1.16 mgkg-1) at different site . Among all the grass species I. laxum has the higher affinity for the accumulation of Cd (0.85±0.05) followed by Zn, Pb and Cu. This study indicates that bio concentration of heavy metals in the study area show preferential Cd uptake in the plants followed by Zn, Pb and it may lead to accumulates in the exposed plant part posing risk along the food chain. This calls for immediate action to be implemented to carry out necessary environment mitigation measures for the river as it can be attributed the discharge of untreated domestic waste and effluents in the river
Quantum state-dependent diffusion and multiplicative noise: a microscopic approach
The state-dependent diffusion, which concerns the Brownian motion of a
particle in inhomogeneous media has been described phenomenologically in a
number of ways. Based on a system-reservoir nonlinear coupling model we present
a microscopic approach to quantum state-dependent diffusion and multiplicative
noise in terms of a quantum Markovian Langevin description and an associated
Fokker-Planck equation in position space in the overdamped limit. We examine
the thermodynamic consistency and explore the possibility of observing a
quantum current, a generic quantum effect, as a consequence of this
state-dependent diffusion similar to one proposed by B\"{u}ttiker [Z. Phys. B
{\bf 68}, 161 (1987)] in a classical context several years ago.Comment: To be published in Journal of Statistical Physics 28 pages, 3 figure
Dynamics of a metastable state nonlinearly coupled to a heat bath driven by an external noise
Based on a system-reservoir model, where the system is nonlinearly coupled to
a heat bath and the heat bath is modulated by an external stationary Gaussian
noise, we derive the generalized Langevin equation with space dependent
friction and multiplicative noise and construct the corresponding Fokker-Planck
equation, valid for short correlation time, with space dependent diffusion
coefficient to study the escape rate from a metastable state in the moderate to
large damping regime. By considering the dynamics in a model cubic potential we
analyze the result numerically which are in good agreement with the theoretical
prediction. It has been shown numerically that the enhancement of rate is
possible by properly tuning the correlation time of the external noise.Comment: 13 pages, 5 figures, Revtex4. To appear in Physical Review
Axial Vector Coupling Constant in Chiral Colour Dielectric Model
The axial vector coupling constants of the decay processes of neutron
and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM).
Using these axial coupling constants of neutron and hyperon, in CCDM we
calculate the integrals of the spin dependent structure functions for proton
and neutron. Our result is similar to the results obtained by MIT bag and
Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.
Probing liquid surface waves, liquid properties and liquid films with light diffraction
Surface waves on liquids act as a dynamical phase grating for incident light.
In this article, we revisit the classical method of probing such waves
(wavelengths of the order of mm) as well as inherent properties of liquids and
liquid films on liquids, using optical diffraction. A combination of simulation
and experiment is proposed to trace out the surface wave profiles in various
situations (\emph{eg.} for one or more vertical, slightly immersed,
electrically driven exciters). Subsequently, the surface tension and the
spatial damping coefficient (related to viscosity) of a variety of liquids are
measured carefully in order to gauge the efficiency of measuring liquid
properties using this optical probe. The final set of results deal with liquid
films where dispersion relations, surface and interface modes, interfacial
tension and related issues are investigated in some detail, both theoretically
and experimentally. On the whole, our observations and analyses seem to support
the claim that this simple, low--cost apparatus is capable of providing a
wealth of information on liquids and liquid surface waves in a non--destructive
way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology
(IOP
Baryon magnetic moments in the QCD string approach
Magnetic moments of baryons composed of light and strange quarks are computed
for the first time through the only parameter of the model -- string tension
. Resulting theoretical values differ from the experimental ones
typically by about
10%.Comment: LaTeX, 13 pages; misprints are correcte
Langevin dynamics with dichotomous noise; direct simulation and applications
We consider the motion of a Brownian particle moving in a potential field and
driven by dichotomous noise with exponential correlation. Traditionally, the
analytic as well as the numerical treatments of the problem, in general, rely
on Fokker-Planck description. We present a method for direct numerical
simulation of dichotomous noise to solve the Langevin equation. The method is
applied to calculate nonequilibrium fluctuation induced current in a symmetric
periodic potential using asymmetric dichotomous noise and compared to
Fokker-Planck-Master equation based algorithm for a range of parameter values.
Our second application concerns the study of resonant activation over a
fluctuating barrier.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen
Decuplet Baryon Structure from Lattice QCD
The electromagnetic properties of the SU(3)-flavor baryon decuplet are
examined within a lattice simulation of quenched QCD. Electric charge radii,
magnetic moments, and magnetic radii are extracted from the E0 and M1 form
factors. Preliminary results for the E2 and M3 moments are presented giving the
first model independent insight to the shape of the quark distribution in the
baryon ground state. As in our octet baryon analysis, the lattice results give
evidence of spin-dependent forces and mass effects in the electromagnetic
properties. The quark charge distribution radii indicate these effects act in
opposing directions. Some baryon dependence of the effective quark magnetic
moments is seen. However, this dependence in decuplet baryons is more subtle
than that for octet baryons. Of particular interest are the lattice predictions
for the magnetic moments of and for which new recent
experimental measurements are available. The lattice prediction of the
ratio appears larger than the experimental ratio, while the
lattice prediction for the magnetic moment ratio is in good
agreement with the experimental ratio.Comment: RevTeX manuscript, 34 pages plus 21 figures (available upon request
Mycobacterium tuberculosis ClpP Proteases Are Co-transcribed but Exhibit Different Substrate Specificities
PMCID: PMC3613350This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
An African-specific haplotype in MRGPRX4 is associated with menthol cigarette smoking
In the U.S., more than 80% of African-American smokers use mentholated cigarettes, compared to less than 30% of Caucasian smokers. The reasons for these differences are not well understood. To determine if genetic variation contributes to mentholated cigarette smoking, we performed an exome-wide association analysis in a multiethnic population-based sample from Dallas, TX (N = 561). Findings were replicated in an independent cohort of African Americans from Washington, DC (N = 741). We identified a haplotype of MRGPRX4 (composed of rs7102322[G], encoding N245S, and rs61733596[G], T43T), that was associated with a 5-to-8 fold increase in the odds of menthol cigarette smoking. The variants are present solely in persons of African ancestry. Functional studies indicated that the variant G protein-coupled receptor encoded by MRGPRX4 displays reduced agonism in both arrestin-based and G protein-based assays, and alteration of agonism by menthol. These data indicate that genetic variation in MRGPRX4 contributes to inter-individual and inter-ethnic differences in the preference for mentholated cigarettes, and that the existence of genetic factors predisposing vulnerable populations to mentholated cigarette smoking can inform tobacco control and public health policies
- …