8 research outputs found

    Overlap and diversity in antimicrobial peptide databases: Compiling a non-redundant set of sequences

    Get PDF
    Motivation: The large variety of antimicrobial peptide (AMP) databases developed to date are characterized by a substantial overlap of data and similarity of sequences. Our goals are to analyze the levels of redundancy for all available AMP databases and use this information to build a new nonredundant sequence database. For this purpose, a new software tool is introduced. Results: A comparative study of 25 AMP databases reveals the overlap and diversity among them and the internal diversity within each database. The overlap analysis shows that only one database (Peptaibol) contains exclusive data, not present in any other, whereas all sequences in the LAMP-Patent database are included in CAMP-Patent. However, the majority of databases have their own set of unique sequences, as well as some overlap with other databases. The complete set of non-duplicate sequences comprises 16 990 cases, which is almost half of the total number of reported peptides. On the other hand, the diversity analysis identifies the most and least diverse databases and proves that all databases exhibit some level of redundancy. Finally, we present a new parallel-free software, named Dover Analyzer, developed to compute the overlap and diversity between any number of databases and compile a set of non-redundant sequences. These results are useful for selecting or building a suitable representative set of AMPs, according to specific needs. © The Author 2015. Published by Oxford University Press. All rights reserved.Antimicrobial Cationic Peptide

    Physico-Chemical and structural interpretation of discrete derivative indices on N-tuples atoms

    Get PDF
    This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms. © 2016 by the authors; licensee MDPI, Basel, Switzerland.Pharmaceutical Preparation

    Computational modelling of the antischistosomal activity for neolignan derivatives based on the MIA-SAR approach

    No full text
    <div><p>Theoretical models for exploring the antischistosomal activity of a dataset of 18 synthetic neolignans are built using the multivariate image analysis applied to structure–activity relationships (MIA-SAR) approach. The obtained models were validated using the accuracy (Acc) in leave-one-out cross-validation, external validation and Y-randomization procedures, yielding correct classification superior to 80%, 70% and 60%, respectively. Additionally, a comparison was made of the models obtained from binary (black and white) and coloured images; the colours (pixel values) were selected to correspond to chemical properties. It was observed that the models obtained from coloured images with pixel values corresponding to electronegativity (known as the aug-MIA-SAR<sub><sub>colour</sub></sub> approach) generally yielded superior statistical parameters compared with those obtained from binary images (MIA-SAR) and randomly coloured images (atoms are coloured according to their type) with atomic sizes corresponding to Van der Waals radius (aug-MIA-SAR), respectively. Mechanistic interpretation of the influence of different substituents on the antischistosomal activity revealed that methoxy substituents in the R1 (or R2) and R5 positions of the neolignan scaffold are indispensable for the antischistosomal activity. The obtained results provide knowledge of the possible structural modifications to yield novel neolignan compounds with antischistosomal activity.</p></div

    QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents

    No full text
    <div><p>The QuBiLs-MAS approach is used for the <i>in silico</i> modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.</p></div

    Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer

    No full text
    corecore