191 research outputs found
Photon Wave-packet Manipulation via Dynamic Electromagnetically Induced Transparency in Multilayer Structures
We present a Maxwell-Bloch description of the dynamics of a light pulse
propagating through a spatially inhomogeneous system consisting of alternating
layers of EIT media and vacuum. We study the effect of a dynamical modulation
of the EIT control field on the shape of the wave packet: interesting effects
due to the presence of interfaces with group velocity mismatch are found. An
effective description based on a continuity equation is developed. Modulation
schemes that can be realized in ultracold atomic samples with standard
experimental techniques are proposed and discussed
Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation
Controlled environment agriculture in greenhouse is a promising solution for meeting the increasing food demand of world population. The accurate control of the indoor environmental conditions proper of greenhouses enhances high crop productivity but, contemporarily, it entails considerable energy consumption due to the adoption of mechanical systems. This work presents a new modelling approach for estimating the energy consumption for climate control of mechanically ventilated greenhouses. The novelty of the proposed energy model lies in its integrated approach in simulating the greenhouse dynamics, considering the dynamic thermal and hygric behaviour of the building and the dynamic response of the cultivated crops to the variation of the solar radiation. The presented model simulates the operation of the systems and the energy performance, considering also the variable angular speed fans that are a new promising energy-efficient technology for this productive sector. The main outputs of the model are the hourly thermal and electrical energy use for climate control and the main indoor environmental conditions. The presented modelling approach was validated against a dataset acquired in a case study of a new fully mechanically controlled greenhouse during a long-term monitoring campaign. The present work contributes to increase the knowledge about the dynamics and the energy consumption of greenhouses, and it can be a valuable decision support tool for industry, farmers, and researchers to properly address an energy efficiency optimisation in mechanically ventilated greenhouses to reach the overall objective of decreasing the rising energy consumption of the agricultural sector
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
Patterning Large-Scale Nanostructured Microarrays on Coverslip for Sensitive Plasmonic Detection of Aqueous Gliadin Traces
(c) The Author/sUser-friendly devices for detecting low gliadin content in commercial foods are of extreme importance for people with gluten diseases. With this concern, the present work proposes a rapid and sensitive optical nanostructured microarrays platform for the detection of gliadin using specific anti-gliadin IgG antibodies immobilized on annealed gold nanostructures (AuNPs) obtained after the high annealing process (550◦C) of gold thin films evaporated on commercial glass coverslips. Localized Surface Plasmon Resonance (LSPR) immunosensing of gliadin in the range of 0.1 ppm to 1000 ppm is successfully achieved. In addition, the biofunctionalization protocol was used for gluten screening in five food complex products.Publishe
Acoustic multi-detection of Gliadin using QCM crystals patterned with controlled sectors of tem grid and annealed Nanoislands on gold electrode
Celiac diseases are a group of gluten ingestion-correlated pathologies that are widespread and, in some cases, very dangerous for human health. The only effective treatment is the elimination of gluten from the diet throughout life. Nowadays, the food industries are very interested in cheap, easy-to-handle methods for detecting gluten in food, in order to provide their consumers with safe and high-quality food. Here, for the first time, the manufacture of controlled micropatterns of annealed gold nanoislands (AuNIs) on a single QCM crystal (QCM-color) and their biofunctionalization for the specific detection of traces of gliadin is reported. In addition, the modified quartz crystal with a TEM grid and 30 nm Au (Q-TEM grid crystal) is proposed as an acoustic sensitive biosensing platform for the rapid screening of the gliadin content in real food products
Quartz crystal microbalance genosensing of brettanomyces bruxellensis yeast in wine using a rapid and efficient drop and collect protocol
A miniaturized quartz crystal microbalance (QCM) genosensor is proposed for sensitive and real-time detection of short ssDNA sequences (53 bp) or DNA extracted from Brettanomyces bruxellensis (Brett) yeast cells. The presence of Brett yeast causes a depreciation of the quality of aged fine wines, producing molecules of unpleasant odors and biogenic amines that are harmful to human health. More specifically, standard quartz crystal (S-QCM) and homemade 4 nm gold transmission electron microscopy (TEM)-grid patterned quartz (multi-TEM QCM) are herein proposed for biofunctionalization steps with different ssDNA sequences. By employing a rapid and efficient drop and collect protocol, the specific detection of 1 pg/\ub5L ssDNA Brett of a short sequence and 100 ng/\ub5L DNA of B. bruxellensis extracted from a wine sample (VR2008) is reported
Potential of Amazonian isolates of Metarhizium to control immatures of Bactrocera carambolae (Diptera: Tephritidae).
This study shows the potential of Amazonian isolates of Metarhizium Sorokin to control immatures of Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), a quarantine pest present in Brazil. Our results reveal the effectiveness of an isolate of Metarhizium anisopliae (Metsch.) Sorokin to control immatures of B. carambolae, suggesting the potential for direct application of this isolate onto the soil to reduce populations of the pest
Ocorrência natural de Beauveria bassiana em broca da haste da mandioca, Sternocoelus spp., no Amapá.
Uma metodologia para o fortalecimento de grupos de mentoria técnica.
O objetivo deste trabalho foi estruturar um processo que permitisse a criação e o fortalecimento de grupos de mentores técnicos, oriundos de uma empresa de pesquisa, com participantes de um programa de aceleração de startups com foco em agricultura digital
- …