37 research outputs found

    Molecular Mechanism of Incorporation of Factor Va into Prothrombinase

    Get PDF
    The mainstay of the blood coagulation cascade is the formation of the fibrin clot, catalyzed by the serine protease, thrombin. The prothrombinase complex catalyzes the activation of prothrombin to thrombin and, is composed of the enzyme, factor Xa, and the protein cofactor, factor Va, in the presence of divalent metal ions associated on a membrane surface. The enzyme, factor Xa, alone can activate prothrombin by two sequential proteolytic cleavages at Arg271 and Arg320 resulting in the intermediates, Fragment 1.2 and Prethrombin 2. The overall rate of this reaction is not compatible with survival. On the other hand, the incorporation of an excess of the cofactor, factor Va, into prothrombinase reverses the order of the proteolytic cleavages and increases the catalytic activity of factor Xa by 5 orders of magnitude, making this reaction compatible with survival. The goal of this research is to identify the precise amino acids of the central portion of the factor Va heavy chain involved in its incorporation into the prothrombinase complex and the cofactor function it exerts on the catalytic efficiency of prothrombin activatio

    Role of the Acidic Hirudin-like COOH-Terminal Amino Acid Region of Factor Va Heavy Chain in the Enhanced Function of Prothrombinase†

    Get PDF
    Prothrombinase activates prothrombin through initial cleavage at Arg(320) followed by cleavage at Arg(271). This pathway is characterized by the generation of an enzymatically active, transient intermediate, meizothrombin, that has increased chromogenic substrate activity but poor clotting activity. The heavy chain of factor Va contains an acidic region at the COOH terminus (residues 680-709). We have shown that a pentapeptide from this region (DYDYQ) inhibits prothrombin activation by prothrombinase by inhibiting meizothrombin generation. To ascertain the function of these regions, we have created a mutant recombinant factor V molecule that is missing the last 30 amino acids from the heavy chain (factor V(Delta680-709)) and a mutant molecule with the (695)DYDY (698) --\u3e AAAA substitutions (factor V(4A)). The clotting activities of both recombinant mutant factor Va molecules were impaired compared to the clotting activity of wild-type factor Va (factor Va (Wt)). Using an assay employing purified reagents, we found that prothrombinase assembled with factor Va(Delta680-709) displayed an approximately 39% increase in k cat, while prothrombinase assembled with factor Va(4A) exhibited an approximately 20% increase in k cat for the activation of prothrombin as compared to prothrombinase assembled with factor Va(Wt). Gel electrophoresis analyzing prothrombin activation by prothrombinase assembled with the mutant molecules revealed a delay in prothrombin activation with persistence of meizothrombin. Our data demonstrate that the COOH-terminal region of factor Va heavy chain is indeed crucial for coordinated prothrombin activation by prothrombinase because it regulates meizothrombin cleavage at Arg(271) and suggest that this portion of factor Va is partially responsible for the enhanced procoagulant function of prothrombinase

    Contribution of Amino Acid Region 334−335 from Factor Va Heavy Chain to the Catalytic Efficiency of Prothrombinase†

    Get PDF
    ABSTRACT: We have demonstrated that amino acids E323, Y324, E330, and V331 from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D334 and Y335 as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D334 f K and Y335 f F (factor VKF) and D334 f A and Y335 f A (factor VAA). Kinetic studies showed that while factor VaKF and factor VaAA had a KD for factor Xa similar to the KD observed for wild-type factor Va (factor VaWT), the clotting activities of the mutant molecules were impaired and the kcat of prothrombinase assembled with factor VaKF and factor VaAA was reduced. The second-order rate constant of prothrombinase assembled with factor VaKF or factor VaAA for prothrombin activation was ∼10-fold lower than the second-order rate constant for the same reaction catalyzed by prothrombinase assembled with factor VaWT. We also created quadruple mutants combining mutations in the amino acid region 334–335 with mutations at the previously identified amino acids that are important for factor Xa binding (i.e., E323Y324 and E330V331). Prothrombinase assembled with the quadruple mutant molecules displayed a second-order rate constant up to 400-fold lower than the values obtained with prothrombinase assembled with factor VaWT. The dat

    Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4

    Get PDF
    ABSTRACT The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with constitutive activities and those induced by xenobiotic ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One unexplained cellular role for the AHR is its ability to promote cell cycle progression in the absence of exogenous ligands, whereas treatment with exogenous ligands induces cell cycle arrest. Within the cell cycle, progression from G 1 to S phase is controlled by sequential phosphorylation of the retinoblastoma protein (RB1) by cyclin D-cyclin-dependent kinase (CDK) 4/6 complexes. In this study, the functional interactions between the AHR, CDK4, and cyclin D1 (CCND1) were investigated as a potential mechanism for the cell cycle regulation by the AHR. Time course cell cycle and molecular experiments were performed in human breast cancer cells. The results demonstrated that the AHR and CDK4 interact within the cell cycle, and the interaction was disrupted upon TCDD treatment. The disruption was temporally correlated with G 1 cell cycle arrest and decreased phosphorylation of RB1. Biochemical reconstitution assays using in vitro-translated protein recapitulated the AHR and CDK4 interaction and showed that CCND1 was also part of the complex. In vitro assays for CDK4 kinase activity demonstrated that RB1 phosphorylation by the AHR/CDK4/CCND1 complex was reduced in the presence of TCDD. The results suggest that the AHR interacts in a complex with CDK4 and CCND1 in the absence of exogenous ligands to facilitate cell cycle progression. This interaction is disrupted by exogenous ligands, such as TCDD, to induce G 1 cell cycle arrest. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a member of the basic helix-loophelix, period/aryl hydrocarbon receptor nuclear translocator (ARNT)/single-minded (PAS) superfamily. In the canonical model for AHR signaling, the unliganded form of the receptor exists in the cytoplasm in a stable complex with HSP90

    Breast Cancer Stem-Like Cells Are Inhibited by a Non-Toxic Aryl Hydrocarbon Receptor Agonist

    Get PDF
    Cancer stem cells (CSCs) have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs) by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH). CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs.We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231) mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR) agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation). It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast. Thus, the anti-cancer effects of tranilast are AHR dependent.We show that tranilast is an AHR agonist with inhibitory effects on breast CSCs. It is effective against CSCs of triple-negative breast cancer cells selected for anti-cancer drug resistance. These results suggest it might find applications in the treatment of breast cancer

    Cooperative Regulation of the Activity of Factor Xa within Prothrombinase by Discrete Amino Acid Regions from Factor Va Heavy Chain†

    Get PDF
    ABSTRACT: The prothrombinase complex catalyzes the activation of prothrombin to R-thrombin. We have repetitively shown that amino acid region 695DYDY698 from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. We have also recently demonstrated that amino acid region 334DY335 is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334–335 an

    The role of the aryl hydrocarbon receptor in normal and malignant B cell development

    Get PDF

    Cleavage at Both Arg306 and Arg506 Is Required and Sufficient for Timely and Efficient Inactivation of Factor VA by Activated Protein C

    No full text
    Activated protein C (APC) inactivates membrane-bound factor Va following cleavages of the heavy chain at Arg, Arg, and Arg. The objective of this study is to examine which cleavage is most important for inactivation. The recombinant factor V molecules were constructed as follows: factor V (mutations R→Q), factor V (mutations R→Q), and factor V (mutations R→Q and R→Q). The recombinant molecules were expressed in mammalian cells, purified, and assayed prior and after incubation with APC and lipids for 30 min (factor Vai) in clotting assays and in an assay using purified reagents and saturating concentrations of factor Va. Clotting assays demonstrated that wild-type factor Vai (Vai), factor Vai, and factor Vai were devoid of activity, whereas factor Vai maintained approximately 70% activity following a 30 min incubation with APC. Prothrombinase assembled with all mutant cofactor molecules before and after treatment with APC had kinetic constant (Km) values similar to values found with prothrombinase assembled with factor Va. Prothrombinase assembled with factor Vai demonstrated a 20-fold reduction in kcat, whereas prothrombinase assembled with factor Vai had a two-fold reduction in kcat as compared with prothrombinase assembled with factor Va. In contrast, factor Vai and factor Vai did not show any loss in kcat under similar experimental conditions. In conclusion, our data demonstrate that the activity of an APC-treated factor Va molecule bearing a single mutation at Arg or Arg depends on the assay used; and regardless of the assay employed, in the absence of the APC-cleavage sites at Arg and Arg, the active cofactor is unable to be significantly inactivated by APC in the presence of a membrane surface
    corecore