24 research outputs found

    Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ

    Get PDF
    Gating strategy for FLOW cytometry data in Fig.  7b . An average of 100,000 events were counted for each sample. To start, all samples were taken through the first three gates (top, labeled 1, 2, 3), which excluded artifacts that were not single-cells based on forward and side scatter. From there, DAPI stain was used to determine viability (gate 4). All DAPI negative cells were carried to gate 5, where cells were split into CD45 positive and CD45 negative populations. The CD45 positive population was then gated using F4/80 on the x axis and CD45 on the y axis (gate 6). Circles indicate CD45 + F4/80+ cells. Values for the graph in Fig. 7b were obtained by taking the total number of CD45+F4/80+ cells counted for each sample and dividing that value by the total number of viable cells counted in the sample (DAPI negative). (PDF 309 kb

    Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes?

    No full text
    Pancreatic cancer has one of the highest mortality rates among all types of cancers. The disease is highly aggressive and typically diagnosed in late stage making it difficult to treat. Currently, the vast majority of therapeutic regimens have only modest curative effects, and most of them are in the surgical/neo-adjuvant setting. There is a great need for new and more effective treatment strategies in common clinical practice. Previously, pathogenesis of pancreatic cancer was attributed solely to genetic mutations; however, recent advancements in the field have demonstrated that aberrant activation of epigenetic pathways contributes significantly to the pathogenesis of the disease. The identification of these aberrant activated epigenetic pathways has revealed enticing targets for the use of epigenetic inhibitors to mitigate the phenotypic changes driven by these cascades. These pathways have been found to be responsible for overactivation of growth signaling pathways and silencing of tumor suppressors and other cell cycle checkpoints. Furthermore, new miRNA signatures have been uncovered in pancreatic ductal adenocarcinoma (PDAC) patients, further widening the window for therapeutic opportunity. There has been success in preclinical settings using both epigenetic inhibitors as well as miRNAs to slow disease progression and eliminate diseased tissues. In addition to their utility as anti-proliferative agents, the pharmacological inhibitors that target epigenetic regulators (referred to here as readers, writers, and erasers for their ability to recognize, deposit, and remove post-translational modifications) have the potential to reconfigure the epigenetic landscape of diseased cells and disrupt the cancerous phenotype. The potential to “reprogram” cancer cells to revert them to a healthy state presents great promise and merits further investigation

    Additional file 1: of Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer

    No full text
    Effect of 30 day treatment with 40 mg/kg TQ or vehicle in NGL reporter mice injected with ID8 cells. (A) Quantification of ascites fluid volume at sacrifice showed increased ascites with TQ treatment, but no significant differences in (B) the number of peritoneal implants or (C) mesenteric tumor mass. (D) QPCR analysis of the mRNA expression of the markers of M2 macrophages, mannose-receptor (mann-R) and interleukin-10 (IL-10) and M1 macrophages (CCL3) in RNA extracted from peritoneal lavages or ascites fluid. Values were normalized to corresponding levels of GAPDH mRNA expression. (E) Luciferase activity of the NF-ÃŽÅŸB reporter was measured in isolated macrophages from ascites or peritoneal lavage fluid, and expressed relative to cellular protein. Values are mean+SD for 5 mice per group. *p < 0.01 relative to vehicle-treated mice; NS: not significant relative to vehicle, Mann-Whitney test. (PDF 117 kb
    corecore