553 research outputs found
Exact states and spectra of vibrationally dressed polaritons
Strong coupling between light and matter is possible with a variety of organic materials. In contrast to the simpler inorganic case, organic materials often have a complicated spectrum, with vibrationally dressed electronic transitions. Strong coupling to light competes with this vibrational dressing and, if strong enough, can suppress the entanglement between electronic and vibrational degrees of freedom. By exploiting symmetries, we can perform exact numerical diagonalization to find the polaritonic states for intermediate numbers of molecules and use these to define and validate accurate expressions for the lower polariton states and strong-coupling spectrum in the thermodynamic limit. Using this approach, we find that vibrational decoupling occurs as a sharp transition above a critical matter-light coupling strength. We also demonstrate how the polariton spectrum evolves with the number of molecules, recovering classical linear optics results only at large N
Large scale numerical investigation of excited states in poly(phenylene)
A density matrix renormalisation group scheme is developed, allowing for the
first time essentially exact numerical solutions for the important excited
states of a realistic semi-empirical model for oligo-phenylenes. By monitoring
the evolution of the energies with chain length and comparing them to the
experimental absorption peaks of oligomers and thin films, we assign the four
characteristic absorption peaks of phenyl-based polymers. We also determine the
position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps
Effective theories of scattering with an attractive inverse-square potential and the three-body problem
A distorted-wave version of the renormalisation group is applied to
scattering by an inverse-square potential and to three-body systems. In
attractive three-body systems, the short-distance wave function satisfies a
Schroedinger equation with an attractive inverse-square potential, as shown by
Efimov. The resulting oscillatory behaviour controls the renormalisation of the
three-body interactions, with the renormalisation-group flow tending to a limit
cycle as the cut-off is lowered. The approach used here leads to single-valued
potentials with discontinuities as the bound states are cut off. The
perturbations around the cycle start with a marginal term whose effect is
simply to change the phase of the short-distance oscillations, or the
self-adjoint extension of the singular Hamiltonian. The full power counting in
terms of the energy and two-body scattering length is constructed for
short-range three-body forces.Comment: 19 pages (RevTeX), 2 figure
A theoretical investigation of the low lying electronic structure of poly(p-phenylene vinylene)
The two-state molecular orbital model of the one-dimensional phenyl-based
semiconductors is applied to poly(p-phenylene vinylene). The energies of the
low-lying excited states are calculated using the density matrix
renormalization group method. Calculations of both the exciton size and the
charge gap show that there are both Bu and Ag excitonic levels below the band
threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit
of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94
eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13
phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to
decrease due to solvation effects. The lowest triplet state is calculated to be
at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison
between theory, and two-photon absorption and electroabsorption is made,
leading to a consistent picture of the essential states responsible for most of
the third-order nonlinear optical properties. An interpretation of the
experimental nonlinear optical spectroscopies suggests an energy difference of
ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed
energy, of the 1Bu exciton and the band gap, respectively.Comment: LaTeX, 19 pages, 7 eps figures included using epsf. To appear in
Physical Review B, 199
Effective field theory of 3He
3He and the triton are studied as three-body bound states in the effective
field theory without pions. We study 3He using the set of integral equations
developed by Kok et al. which includes the full off-shell T-matrix for the
Coulomb interaction between the protons. To leading order, the theory contains:
two-body contact interactions whose renormalized strengths are set by the NN
scattering lengths, the Coulomb potential, and a three-body contact
interaction. We solve the three coupled integral equations with a sharp
momentum cutoff, Lambda, and find that a three-body interaction is required in
3He at leading order, as in the triton. It also exhibits the same limit-cycle
behavior as a function of Lambda, showing that the Efimov effect remains in the
presence of the Coulomb interaction. We also obtain the difference between the
strengths of the three-body forces in 3He and the triton.Comment: 18 pages, 6 figures; further discussion and references adde
Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains
In this paper we present results of large-scale correlated calculations of
triplet photoinduced absorption (PA) spectrum of oligomers of
poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In
particular, the high-energy features in the triplet PA spectrum of oligo-PPVs
are the focus of this study, which, so far, have not been investigated
theoretically, or experimentally. The calculations were performed using the
Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken
into account by means of multi-reference singles-doubles configuration
interaction procedure (MRSDCI), without neglecting any molecular orbitals. The
computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting
of alternating peaks of high and low intensities. The predicted higher energy
features of the triplet spectrum can be tested in future experiments.
Additionally, theoretical estimates of exciton binding energy are also
presented.Comment: To appear in Phys. Rev.
Superconductivity of the One-Dimensional d-p Model with p-p transfer
Using the numerical diagonalization method, we investigate the
one-dimensional - model, simulating a Cu-O linear chain with strong
Coulomb repulsions. Paying attention to the effect of the transfer energy
between the nearest neighbor oxygen-sites, we calculate the critical
exponent of correlation functions based on the Luttinger liquid
relations and the ground state energy as a function of an external
flux . We find that the transfer increases the charge
susceptibility and the exponent in cooperation with the repulsion
at Cu-site. We also show that anomalous flux quantization occurs for
. The superconducting region is presented on a phase diagram of
vs. plane.Comment: 4 pages, RevTex + 5 PS figures include
Irreversibility and Polymer Adsorption
Physisorption or chemisorption from dilute polymer solutions often entails
irreversible polymer-surface bonding. We present a theory of the
non-equilibrium layers which result. While the density profile and loop
distribution are the same as for equilibrium layers, the final layer comprises
a tightly bound inner part plus an outer part whose chains make only fN surface
contacts where N is chain length. The contact fractions f follow a broad
distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong
physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let
Flux front penetration in disordered superconductors
We investigate flux front penetration in a disordered type II superconductor
by molecular dynamics (MD) simulations of interacting vortices and find scaling
laws for the front position and the density profile. The scaling can be
understood performing a coarse graining of the system and writing a disordered
non-linear diffusion equation. Integrating numerically the equation, we observe
a crossover from flat to fractal front penetration as the system parameters are
varied. The value of the fractal dimension indicates that the invasion process
is described by gradient percolation.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
- …