1,110 research outputs found
The test bench for the power amplifiers of the SPIRAL-2 SC LINAC
International audienceThe high current driver accelerator of the SPIRAL 2 project uses independently phased SC resonators working at 88 MHz. Solid state power amplifiers equipped with circulators are foreseen to drive the cavities with widely ranging conditions of beam loading. These power devices are developed by industrial companies and a test bench has been studied and manufactured to test the prototypes, to commission all the units before their installation on the accelerator and to be used to test repaired modules. Even if designed to be used at 88 MHz, the test bench can be used at higher frequencies too. The poster describes the test bench as well as the results on the first amplifiers bought for the cryomodule power tests
Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract]
Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin) fractions (Ogier et al., 1999) that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007). However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008). This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007) that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and possible action fields lay within the intermediary context representing the "resources" such as agriculture, forestry, "driving" elements such as mobility, mediation elements such as territories and environment and concurrent elements such as non-cellulosic biomass, the energy mix and the non-energy valorization
Land cover classification using multi-temporal MERIS vegetation indices
The spectral, spatial, and temporal resolutions of Envisat's Medium Resolution Imaging Spectrometer (MERIS) data are attractive for regional- to global-scale land cover mapping. Moreover, two novel and operational vegetation indices derived from MERIS data have considerable potential as discriminating variables in land cover classification. Here, the potential of these two vegetation indices (the MERIS global vegetation index (MGVI), MERIS terrestrial chlorophyll index (MTCI)) was evaluated for mapping eleven broad land cover classes in Wisconsin. Data acquired in the high and low chlorophyll seasons were used to increase inter-class separability. The two vegetation indices provided a higher degree of inter-class separability than data acquired in many of the individual MERIS spectral wavebands. The most accurate landcover map (73.2%) was derived from a classification of vegetation index-derived data with a support vector machine (SVM), and was more accurate than the corresponding map derived from a classification using the data acquired in the original spectral wavebands
A phase transition of the adsorbed layer: High pressure effect on fatty alcohol adsorption at an oil-water interface
Measurement of the interfacial tension of fatty alcohol solutions permits determination of the amount of amphiphile adsorbed. This amount varies with both pressure and concentration. At some critical value, the interfacial solution splits into two phases. In the dilute phase, the adsorbed molecules are solvated by the oil whereas in the condensed phase there is no solvent interspersed between the aliphatic chains. A thermodynamical analysis of this two-dimensional phase transition is given assuming the interfacial solution to be regular. © 1979 American Institute of Physics.published_or_final_versio
Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt
In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type
Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection
We report on recent accelerator testing of a prototype general antiparticle
spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches
that exploits the antideuterons produced in neutralino-neutralino
annihilations. GAPS captures these antideuterons into a target with the
subsequent formation of exotic atoms. These exotic atoms decay with the
emission of X-rays of precisely defined energy and a correlated pion signature
from nuclear annihilation. This signature uniquely characterizes the
antideuterons. Preliminary analysis of data from a prototype GAPS in an
antiproton beam at the KEK accelerator in Japan has confirmed the
multi-X-ray/pion star topology and indicated X-ray yields consistent with prior
expectations. Moreover our success in utilizing solid rather than gas targets
represents a significant simplification over our original approach and offers
potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA
Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry
We investigate the dynamics of pairs of drops in microfluidic ladder networks
with slanted bypasses, which break the fore-aft structural symmetry. Our
analytical results indicate that unlike symmetric ladder networks, structural
asymmetry introduced by a single slanted bypass can be used to modulate the
relative drop spacing, enabling them to contract, synchronize, expand, or even
flip at the ladder exit. Our experiments confirm all these behaviors predicted
by theory. Numerical analysis further shows that while ladder networks
containing several identical bypasses are limited to nearly linear
transformation of input delay between drops, mixed combination of bypasses can
cause significant non-linear transformation enabling coding and decoding of
input delays.Comment: 4 pages, 5 figure
Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay
OBJECTIVE: The main objective of this study was to assess the influence of gas mixtures on in vitro Plasmodium falciparum growth and 50% inhibitory concentration (IC(50)) for chloroquine. METHODS: The study was performed between February 2004 and December 2005. 136 Plasmodium falciparum isolates were used to evaluate gas mixtures effect on IC(50 )for chloroquine by isotopic microtest. The oxygen effect on asexual blood cycle of 3D7 and W2 clones was determined by thin blood smears examination and tritiated hypoxanthine uptake. RESULTS: From 5% O(2 )to 21% O(2 )conditions, no parasiticide effect of O(2 )concentration was observed in vitro on the clones 3D7 and W2. A parasitostatic effect was observed during the exposure of mature trophozoĂŻtes and schizonts at 21% O(2 )with an increase in the length of schizogony. The chloroquine IC(50 )at 10% O(2 )were significantly higher than those at 21% O(2), means of 173.5 nM and 121.5 nM respectively (p < 0.0001). In particular of interest, among the 63 isolates that were in vitro resistant to chloroquine (IC(50 )> 100 nM) at 10% O(2), 17 were sensitive to chloroquine (IC(50 )< 100 nM) at 21% O(2). CONCLUSION: Based on these results, laboratories should use the same gas mixture to realize isotopic microtest. Further studies on comparison of isotopic and non-isotopic assays are needed to establish a standardized in vitro assay protocol to survey malaria drug resistance
The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -
A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by
means of a low intensity 20 GeV/c per nucleon ion beam obtained by
fragmentation of a primary beam of Pb ions. Data have been collected with a
single beam setting, over the range of nuclear charges 2<Z<~45 in various beam
conditions and using different radiators. The charge Z and velocity beta
resolutions have been measured.Comment: 4 pages, contribution to the ICRC 200
- …