447 research outputs found
Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle
<p>Abstract</p> <p>Background</p> <p>Quantitative Trait Loci (QTL) affecting meat tenderness have been reported on Bovine chromosome 10. Here we examine variation at the Calpain 3 (<it>CAPN3</it>) gene in cattle, a gene located within the confidence interval of the QTL, and which is a positional candidate gene based on the biochemical activity of the protein.</p> <p>Results</p> <p>We identified single nucleotide polymorphisms (SNP) in the genomic sequence of the <it>CAPN3 </it>gene and tested three of these in a sample of 2189 cattle. Of the three SNP genotyped, the <it>CAPN3:c.1538+225G>T </it>had the largest significant additive effect, with an allele substitution effect in the Brahman of <it>α </it>= -0.144 kg, SE = 0.060, <it>P </it>= 0.016, and the polymorphism explained 1.7% of the residual phenotypic variance in that sample of the breed. Significant haplotype substitution effects were found for all three breeds, the Brahman, the Belmont Red, and the Santa Gertrudis. For the common haplotype, the haplotype substitution effect in the Brahman was <it>α </it>= 0.169 kg, SE = 0.056, <it>P </it>= 0.003. The effect of this gene was compared to Calpastatin in the same sample. The SNP show negligible frequencies in taurine breeds and low to moderate minor allele frequencies in zebu or composite animals.</p> <p>Conclusion</p> <p>These associations confirm the location of a QTL for meat tenderness in this region of bovine chromosome 10. SNP in or near this gene may be responsible for part of the overall difference between taurine and zebu breeds in meat tenderness, and the greater variability in meat tenderness found in zebu and composite breeds. The evidence provided so far suggests that none of these tested SNP are causative mutations.</p
Haplotype Analysis Improved Evidence for Candidate Genes for Intramuscular Fat Percentage from a Genome Wide Association Study of Cattle
In genome wide association studies (GWAS), haplotype analyses of SNP data are neglected in favour of single point analysis of associations. In a recent GWAS, we found that none of the known candidate genes for intramuscular fat (IMF) had been identified. In this study, data from the GWAS for these candidate genes were re-analysed as haplotypes. First, we confirmed that the methodology would find evidence for association between haplotypes in candidate genes of the calpain-calpastatin complex and musculus longissimus lumborum peak force (LLPF), because these genes had been confirmed through single point analysis in the GWAS. Then, for intramuscular fat percent (IMF), we found significant partial haplotype substitution effects for the genes ADIPOQ and CXCR4, as well as suggestive associations to the genes CEBPA, FASN, and CAPN1. Haplotypes for these genes explained 80% more of the phenotypic variance compared to the best single SNP. For some genes the analyses suggested that there was more than one causative mutation in some genes, or confirmed that some causative mutations are limited to particular subgroups of a species. Fitting the SNPs and their interactions simultaneously explained a similar amount of the phenotypic variance compared to haplotype analyses. Haplotype analysis is a neglected part of the suite of tools used to analyse GWAS data, would be a useful method to extract more information from these data sets, and may contribute to reducing the missing heritability problem
Genome-wide association studies for feedlot and growth traits in cattle
A genome wide-association study for production traits in cattle was carried out using genotype data from the 10K Affymetrix (Santa Clara, CA) and the 50K Illumina (San Diego, CA) SNP chips. The results for residual feed intake (RFI), BW, and hip height in 3 beef breed types (Bos indicus, Bos taurus, and B. indicus × B. taurus), and for stature in dairy cattle, are presented. The aims were to discover SNP associated with all traits studied, but especially RFI, and further to test the consistency of SNP effects across different cattle populations and breed types. The data were analyzed within data sets and within breed types by using a mixed model and fitting 1 SNP at a time. In each case, the number of significant SNP was more than expected by chance alone. A total of 75 SNP from the reference population with 50K chip data were significant (P < 0.001) for RFI, with a false discovery rate of 68%. These 75 SNP were mapped on 24 different BTA. Of the 75 SNP, the 9 most significant SNP were detected on BTA 3, 5, 7, and 8, with P ≤ 6.0 × 10 . In a population of Angus cattle divergently selected for high and low RFI and 10K chip data, 111 SNP were significantly (P < 0.001) associated with RFI, with a false discovery rate of 7%. Approximately 103 of these SNP were therefore likely to represent true positives. Because of the small number of SNP common to both the 10K and 50K SNP chips, only 27 SNP were significantly (P < 0.05) associated with RFI in the 2 populations. However, other chromosome regions were found that contained SNP significantly associated with RFI in both data sets, although no SNP within the region showed a consistent effect on RFI. The SNP effects were consistent between data sets only when estimated within the same breed type
The strike rate index: a new index for journal quality based on journal size and the h-index of citations
Quantifying the impact of scientific research is almost always controversial, and there is a need for a uniform method that can be applied across all fields. Increasingly, however, the quantification has been summed up in the impact factor of the journal in which the work is published, which is known to show differences between fields. Here the h-index, a way to summarize an individual's highly cited work, was calculated for journals over a twenty year time span and compared to the size of the journal in four fields, Agriculture, Condensed Matter Physics, Genetics and Heredity and Mathematical Physics. There is a linear log-log relationship between the h-index and the size of the journal: the larger the journal, the more likely it is to have a high h-index. The four fields cannot be separated from each other suggesting that this relationship applies to all fields. A strike rate index (SRI) based on the log relationship of the h-index and the size of the journal shows a similar distribution in the four fields, with similar thresholds for quality, allowing journals across diverse fields to be compared to each other. The SRI explains more than four times the variation in citation counts compared to the impact factor
Bovine gene polymorphisms related to fat deposition and meat tenderness
Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus
Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality
Effects and interactions of calpain-system tenderness gene markers on objective meat quality traits of Brahman (Bos indicus) cattle were quantified within 2 concurrent experiments at different locations. Cattle were selected for study from commercial and research herds at weaning based on their genotype for cal-pastatin (CAST) and calpain 3 (GAPN3) gene markers for beef tenderness. Gene marker status for i-calpain (CAPN1-4751 and CAPN1-316) was also determined for inclusion in statistical analyses. Eighty-two heifer and 82 castrated male cattle with 0 or 2 favorable alleles for CAST and CAPN3 were studied in New South Wales (NSW), and 143 castrated male cattle with 0, 1, or 2 favorable alleles for CAST and CAPN3 were studied in Western Australia (WA). The cattle were backgrounded for 6 to 8 mo and grain-fed for 117 d (NSW) or 80 d (WA) before slaughter. One-half the cattle in each experiment were implanted with a hormonal growth promotant during feedlotting. One side of each carcass was suspended from the Achilles tendon (AT) and the other from the pelvis (tenderstretch). The M. longissimus lumborum from both sides and the M. semitendinosus from the AT side were collected; then samples of each were aged at 1°C for 1 or 7 d. Favorable alleles for one or more markers reduced shear force, with little effect on other meat quality traits. The size of effects of individual markers varied with site, muscle, method of carcass suspension, and aging period. Individual marker effects were additive as evident in cattle with 4 favorable alleles for CAST and CAPN3 markers, which had shear force reductions of 12.2 N (P 0.05) of interactions between the gene markers, or between the hormonal growth promotant and gene markers for any meat quality traits. This study provides further evidence that selection based on the CAST or CAPN3 gene markers improves meat tenderness in Brahman cattle, with little if any detrimental effects on other meat quality traits. The CAPN1-4751 gene marker also improved beef tenderness without affecting other objective meat quality traits in heterozygous cattle compared with homozygotes for the unfavorable allele
A high density linkage map of the bovine genome
<p>Abstract</p> <p>Background</p> <p>Recent technological advances have made it possible to efficiently genotype large numbers of single nucleotide polymorphisms (SNPs) in livestock species, allowing the production of high-density linkage maps. Such maps can be used for quality control of other SNPs and for fine mapping of quantitative trait loci (QTL) via linkage disequilibrium (LD).</p> <p>Results</p> <p>A high-density bovine linkage map was constructed using three types of markers. The genotypic information was obtained from 294 microsatellites, three milk protein haplotypes and 6769 SNPs. The map was constructed by combining genetic (linkage) and physical information in an iterative mapping process. Markers were mapped to 3,155 unique positions; the 6,924 autosomal markers were mapped to 3,078 unique positions and the 123 non-pseudoautosomal and 19 pseudoautosomal sex chromosome markers were mapped to 62 and 15 unique positions, respectively. The linkage map had a total length of 3,249 cM. For the autosomes the average genetic distance between adjacent markers was 0.449 cM, the genetic distance between unique map positions was 1.01 cM and the average genetic distance (cM) per Mb was 1.25.</p> <p>Conclusion</p> <p>There is a high concordance between the order of the SNPs in our linkage map and their physical positions on the most recent bovine genome sequence assembly (Btau 4.0). The linkage maps provide support for fine mapping projects and LD studies in bovine populations. Additionally, the linkage map may help to resolve positions of unassigned portions of the bovine genome.</p
- …