5 research outputs found

    The impact of depression on mothers’ neural processing of their adolescents’ affective behavior

    Get PDF
    12 pagesDepression affects neural processing of emotional stimuli and could, therefore, impact parent–child interactions. However, the neural processes with which mothers with depression process their adolescents’ affective interpersonal signals and how this relates to mothers’ parenting behavior are poorly understood. Mothers with and without depression (N = 64 and N = 51, respectively; Mage = 40 years) from low-income families completed an interaction task with their adolescents (Mage = 12.8 years), which was coded for both individuals’ aggressive, dysphoric, positive and neutral affective behavior. While undergoing fMRI, mothers viewed video clips from this task of affective behavior from their own and an unfamiliar adolescent. Relative to non-depressed mothers, those with depression showed more aggressive and less positive affective behavior during the interaction task and more activation in the bilateral insula, superior temporal gyrus and striatum but less in the lateral prefrontal cortex while viewing aggressive and neutral affect. Findings were comparable for own and unfamiliar adolescents’ affect. Heightened limbic, striatal and sensory responses were associated with more aggressive and dysphoric parenting behavior during the interactions, while reduced lateral prefrontal activation was associated with less positive parenting behavior. These results highlight the importance of depressed mothers’ affective information processing for understanding mothers’ behavior during interactions with their adolescents.This research was supported by a grant from the National Institute of Child Health and Human Development (5R01HD081362-05) awarded to L.S. and N.B.A. The funding sources had no role in the study design, data collection and analysis, or submission process

    Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia

    Get PDF
    Background: Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods: A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results: Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions: The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.</p

    Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia

    Get PDF
    Background: Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods: A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results: Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions: The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.</p

    Subtypes of trait impulsivity differentially correlate with neural responses to food choices

    No full text
    Impulsivity is a personality trait that is linked to unhealthy eating and overweight. A few studies assessed how impulsivity relates to neural responses to anticipating and tasting food, but it is unknown how impulsivity relates to neural responses during food choice. Although impulsivity is a multi-faceted construct, it is unknown whether impulsivity subtypes have different underlying neural mechanisms. We investigated how impulsivity correlates with brain responses during food choice and in how far different impulsivity subtypes modulate brain responses during food choice differently. Twenty weight-concerned females performed an fMRI task in which they indicated for high and low energy snacks whether or not they wanted to eat them. Impulsivity subtypes were measured by the monetary delay discounting task and the Barratt Impulsiveness Scale (total BIS-11 and subscales). Only temporal subtypes of impulsivity, namely delay discounting and the BIS-11 non-planning subscale, modulated responses to food choice; both measures correlated positively with striatum activation during high versus low energy choices. However, only delay discounting predicted high energy choices, whereas BIS-11 non-planning independently related to a striatum region that reflects subjective stimulus value. To conclude, the brain mechanisms underlying subtypes of impulsivity have a common ground but differ in specific aspects of food-relateddecision-making. The findings advance our understanding of the neural correlates of different impulsivity subtypes in the food domain

    Associations between adrenarcheal hormones, amygdala functional connectivity and anxiety symptoms in children

    Full text link
    OBJECTIVE: The transition from childhood to adolescence is a vulnerable period for the development of anxiety symptoms. There is some evidence that hormonal changes occurring during adrenarche, an early pubertal phase, might play a role in this increased vulnerability. Little is known about underlying brain mechanisms. Given the role of the amygdala-based fear circuit in anxiety, the current study aimed to investigate whether children's adrenarcheal hormone levels were associated with functional connectivity of the amygdala while processing fearful facial expressions, and how this in turn related to anxiety symptoms. METHOD: Participants were 83 children (M age 9.53 years) who completed two morning saliva collections to measure levels of dehydroepiandrosterone (DHEA), its sulphate (DHEAS), and testosterone. They also completed the Spence Children's Anxiety Scale (SCAS), and viewed fearful and calm facial expressions while undergoing a functional MRI scan. Psychophysiological interaction (PPI) analyses were performed to examine amygdala connectivity and significant clusters were fed into a bootstrapping mediation model. RESULTS: In boys, mediation analyses showed an indirect positive effect of testosterone on anxiety symptoms, which was mediated by amygdala-secondary visual cortex connectivity as well as amygdala-anterior cingulate connectivity. In girls, DHEAS showed a negative indirect association with anxiety symptoms mediated by amygdala connectivity to the fusiform face area and insula. CONCLUSION: The results indicate unique roles for adrenarcheal hormones in anxiety and suggest that amygdala connectivity may represent an important neural mechanism in these associations. Importantly, results reveal prominent sex differences in the biological mechanisms associated with anxiety in children undergoing adrenarche
    corecore