466 research outputs found

    Local demands on sterile neutrinos

    Full text link
    In a model independent manner, we explore the local implications of a single neutrino oscillation measurement which cannot be reconciled within a three-neutrino theory. We examine this inconsistency for a single region of baseline to neutrino energy L/EL/E. Assuming that sterile neutrinos account for the anomaly, we find that the {\it local} demands of this datum can require the addition to the theory of one to three sterile neutrinos. We examine the constraints which can be used to determine when more than one neutrino would be required. The results apply only to a given region of L/EL/E. The question of the adequacy of the sterile neutrinos to satisfy a global analysis is not addressed here. Finally, using the results of a 3+2 analysis, we indicate values for unknown mixing matrix elements which would require two sterile neutrinos due to local demands only.Comment: 11 pages, 1 figure, discussion adde

    Constraining Models of New Physics in Light of Recent Experimental Results on aψKSa_{\psi K_S}

    Get PDF
    We study extensions of the Standard Model where the charged current weak interactions are governed by the CKM matrix and where all tree-level decays are dominated by their Standard Model contribution. We constrain both analytically and numerically the ratio and the phase difference between the New Physics and the Standard Model contributions to the mixing amplitude of the neutral BB system using the experimental results on RuR_u, Δmd,s\Delta m_{d,s}, ϵK\epsilon_K and aψKSa_{\psi K_S}. We present new results concerning models with minimal flavor violation and update the relevant parameter space. We also study the left-right symmetric model with spontaneously broken CP, probing the viability of this model in view of the recent results for aψKSa_{\psi K_S} and other observables.Comment: 32 pages, including 9 figures, typos and error in fig. 1 corrected, minor modificiation in the text, conclusions unchanged, to appear in PR

    Quintessential Kination and Leptogenesis

    Full text link
    Thermal leptogenesis induced by the CP-violating decay of a right-handed neutrino (RHN) is discussed in the background of quintessential kination, i.e., in a cosmological model where the energy density of the early Universe is assumed to be dominated by the kinetic term of a quintessence field during some epoch of its evolution. This assumption may lead to very different observational consequences compared to the case of a standard cosmology where the energy density of the Universe is dominated by radiation. We show that, depending on the choice of the temperature T_r above which kination dominates over radiation, any situation between the strong and the super--weak wash--out regime are equally viable for leptogenesis, even with the RHN Yukawa coupling fixed to provide the observed atmospheric neutrino mass scale ~ 0.05 eV. For M< T_r < M/100, i.e., when kination stops to dominate at a time which is not much later than when leptogenesis takes place, the efficiency of the process, defined as the ratio between the produced lepton asymmetry and the amount of CP violation in the RHN decay, can be larger than in the standard scenario of radiation domination. This possibility is limited to the case when the neutrino mass scale is larger than about 0.01 eV. The super--weak wash--out regime is obtained for T_r << M/100, and includes the case when T_r is close to the nucleosynthesis temperature ~ 1 MeV. Irrespective of T_r, we always find a sufficient window above the electroweak temperature T ~ 100 GeV for the sphaleron transition to thermalize, so that the lepton asymmetry can always be converted to the observed baryon asymmetry.Comment: 13 pages, 8 figure

    Constraining New Physics with the CDF Measurement of CP Violation in BψKSB \to \psi K_S

    Full text link
    Recently, the CDF collaboration has reported a measurement of the CP asymmetry in the BψKSB\to\psi K_S decay: aψKS=0.790.44+0.41a_{\psi K_S}=0.79^{+0.41}_{-0.44}. We analyze the constraints that follow from this measurement on the size and the phase of contributions from new physics to B-\barB mixing. Defining the relative phase between the full M12M_{12} amplitude and the Standard Model contribution to be 2θd2\theta_d, we find a new bound: \sin2\theta_d\gsim-0.6 (-0.87) at one sigma (95% CL). Further implications for the CP asymmetry in semileptonic B decays are discussed.Comment: 13 pages, harvmac, 3 figures; v2: a discussion of new physics effects on tree level decays added; references added; accepted for publication in Physical Review Letter

    New Physics Effects From B Meson Decays

    Full text link
    In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from B-meson decays, taking R-parity conserving and violating supersymmetry as illustrative examples.Comment: Talk given at the Sixth Workshop on High Energy Particle Phenomenology (WHEPP-6), Chennai (Madras), India. Includes 2 epsf figure

    CP asymmetries in B0 decays in the left-right model

    Get PDF
    We study time dependent CP asymmetries in B^0_{d,s} decays in the left-right model with spontaneous breakdown of CP. Due to the new contributions to B^0-\bar B^0 mixing the CP asymmetries can be substantially modified. Moreover, there can be significant new contributions to the BB-meson decay amplitudes from the magnetic penguins. Most promising for detection of the new physics in the planned BB factories is that the CP asymmetries in the decays B--> J/\psi K_S and B--> \phi K_S which are supposed to be equal in the standard model can differ significantly in this class of models independently of the results in the measurements of B--> X_s \gamma.Comment: Revised version, to appear in PR

    Confronting mass-varying neutrinos with MiniBooNE

    Full text link
    We study the proposal that mass-varying neutrinos could provide an explanation for the LSND signal for \bar\nu_mu to \bar\nu_e oscillations. We first point out that all positive oscillation signals occur in matter and that three active mass-varying neutrinos are insufficient to describe all existing neutrino data including LSND. We then examine the possibility that a model with four mass-varying neutrinos (three active and one sterile) can explain the LSND effect and remain consistent with all other neutrino data. We find that such models with a 3+1 mass structure in the neutrino sector may explain the LSND data and a null MiniBooNE result for 0.10 < \sin^2 2\theta_x < 0.30. Predictions of the model include a null result at Double-CHOOZ, but positive signals for underground reactor experiments and for \nu_\mu to \nu_e oscillations in long-baseline experiments.Comment: 22 pages, 3 figures, 1 table. Comment added about recent MINOS dat

    On Neutrino Masses and a Low Breaking Scale of Left-Right Symmetry

    Full text link
    In left-right symmetric models (LRSM) the light neutrino masses arise from two sources: the seesaw mechanism and a VEV of an SU(2)L_L triplet. If the left-right symmetry breaking, vRv_R, is low, v_R\lsim15\TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the two-fold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations.Comment: 18 pages references added published versio

    A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses

    Full text link
    We investigate adding two sterile neutrinos to resolve the apparent tension existing between short-baseline neutrino oscillation results and CPT-conserving, four-neutrino oscillation models. For both (3+1) and (3+2) models, the level of statistical compatibility between the combined dataset from the null short-baseline experiments Bugey, CHOOZ, CCFR84, CDHS, KARMEN, and NOMAD, on the one hand; and the LSND dataset, on the other, is computed. A combined analysis of all seven short-baseline experiments, including LSND, is also performed, to obtain the favored regions in neutrino mass and mixing parameter space for both models. Finally, four statistical tests to compare the (3+1) and the (3+2) hypotheses are discussed. All tests show that (3+2) models fit the existing short-baseline data significantly better than (3+1) models.Comment: 16 pages, 15 figures. Added NOMAD data to the analysis, one statistical test, and two figures. References and text added. Version submitted to PR
    corecore