529 research outputs found

    Dynamics of a tunable superfluid junction

    Full text link
    We study the population dynamics of a Bose-Einstein condensate in a double-well potential throughout the crossover from Josephson dynamics to hydrodynamics. At barriers higher than the chemical potential, we observe slow oscillations well described by a Josephson model. In the limit of low barriers, the fundamental frequency agrees with a simple hydrodynamic model, but we also observe a second, higher frequency. A full numerical simulation of the Gross-Pitaevskii equation giving the frequencies and amplitudes of the observed modes between these two limits is compared to the data and is used to understand the origin of the higher mode. Implications for trapped matter-wave interferometers are discussed.Comment: 8 pages, 7 figures; v3: Journal reference added, minor changes to tex

    Material properties of Islamic paper

    Get PDF
    In contrast to scientific research focussing on European paper, there is a significant gap in our knowledge of Islamic papermaking. This research surveys the evidence of techniques and materials typically used in Islamic papermaking, to deduce what might be considered as the most significant characteristics. A substantial collection of 228 Islamic papers (~18th–20th century) was characterized using chemical analytical methods: surface profilometry, gloss measurements, specular vs. diffuse reflectance ratio at 457 nm, scanning electron microscopy and infrared spectroscopy for identification of polishing, iodine test for identification of starch, Raspail test for identification of rosin, and fibre furnish analysis. Morphological analysis was performed to examine the presence of watermarks and sieve patterns. In addition, acidity and degree of polymerization of cellulose in paper were determined to explore the average material state of paper in the collection. Near infrared spectroscopic data of the collection were correlated to chemical properties with the aid of multivariate data analysis methods. Four different models were developed focusing on two main characteristics of Islamic paper: two for identification of polishing and starch, and two quantitative models to determine the acidity and degree of polymerization of cellulose in paper. While no single defining characteristic of Islamic paper was identified, 88 % of all papers in the studied collection either contain starch or are polished, or both. ~2 % of papers contain rosin. The majority of papers are neutral to mildly acidic, which is in contrast to their extensive degradation: ~69 % have DP < 1000. Polishing and starch appear to be associated with current values of pH and DP. The developed non-destructive characterization methodology could be applied to Islamic collections in libraries and archives to expand the database with the material properties of papers of known age and provenance and thus better understand geographic and temporal distributions of papermaking practices in Islamic countries

    Transverse Demagnetization Dynamics of a Unitary Fermi Gas

    Full text link
    Understanding the quantum dynamics of strongly interacting fermions is a problem relevant to diverse forms of matter, including high-temperature superconductors, neutron stars, and quark-gluon plasma. An appealing benchmark is offered by cold atomic gases in the unitary limit of strong interactions. Here we study the dynamics of a transversely magnetized unitary Fermi gas in an inhomogeneous magnetic field. We observe the demagnetization of the gas, caused by diffusive spin transport. At low temperatures, the diffusion constant saturates to the conjectured quantum-mechanical lower bound /m\simeq \hbar/m, where mm is the particle mass. The development of pair correlations, indicating the transformation of the initially non-interacting gas towards a unitary spin mixture, is observed by measuring Tan's contact parameter.Comment: 8 pages, 6 figures. Accepted versio

    Observation of the Leggett-Rice effect in a unitary Fermi gas

    Get PDF
    We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40^{40}K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ=1.08(9)\gamma = 1.08(9) and a bare transverse spin diffusivity D0=2.3(4)/mD_0^\perp = 2.3(4)\,\hbar/m for a normal-state gas initialized with full polarization and at one fifth of the Fermi temperature, where mm is the atomic mass. One might expect γ=0\gamma = 0 at unitarity, where two-body scattering is purely dissipative. We observe γ0\gamma \rightarrow 0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a non-zero γ\gamma. Tuning the scattering length aa, we find that a sign change in γ\gamma occurs in the range 0<(kFa)11.30 < (k_F a)^{-1} \lesssim 1.3, where kFk_F is the Fermi momentum. We discuss how γ\gamma reveals the effective interaction strength of the gas, such that the sign change in γ\gamma indicates a switching of branch, between a repulsive and an attractive Fermi gas.Comment: 9 pages, 5 figures; Changed to the more conventional kF=(3 pi^2 n)^1/3, instead of the polarized definition we used in v

    Defect-induced perturbations of atomic monolayers on solid surfaces

    Full text link
    We study long-range morphological changes in atomic monolayers on solid substrates induced by different types of defects; e.g., by monoatomic steps in the surface, or by the tip of an atomic force microscope (AFM), placed at some distance above the substrate. Representing the monolayer in terms of a suitably extended Frenkel-Kontorova-type model, we calculate the defect-induced density profiles for several possible geometries. In case of an AFM tip, we also determine the extra force exerted on the tip due to the tip-induced de-homogenization of the monolayer.Comment: 4 pages, 2 figure

    Kinetics of Anchoring of Polymer Chains on Substrates with Chemically Active Sites

    Full text link
    We consider dynamics of an isolated polymer chain with a chemically active end-bead on a 2D solid substrate containing immobile, randomly placed chemically active sites (traps). For a particular situation when the end-bead can be irreversibly trapped by any of these sites, which results in a complete anchoring of the whole chain, we calculate the time evolution of the probability Pch(t)P_{ch}(t) that the initially non-anchored chain remains mobile until time tt. We find that for relatively short chains Pch(t)P_{ch}(t) follows at intermediate times a standard-form 2D Smoluchowski-type decay law lnPch(t)t/ln(t)ln P_{ch}(t) \sim - t/ln(t), which crosses over at very large times to the fluctuation-induced dependence lnPch(t)t1/2ln P_{ch}(t) \sim - t^{1/2}, associated with fluctuations in the spatial distribution of traps. We show next that for long chains the kinetic behavior is quite different; here the intermediate-time decay is of the form lnPch(t)t1/2ln P_{ch}(t) \sim - t^{1/2}, which is the Smoluchowski-type law associated with subdiffusive motion of the end-bead, while the long-time fluctuation-induced decay is described by the dependence lnPch(t)t1/4ln P_{ch}(t) \sim - t^{1/4}, stemming out of the interplay between fluctuations in traps distribution and internal relaxations of the chain.Comment: Latex file, 19 pages, one ps figure, to appear in PR

    Quantum transport in ultracold atoms

    Full text link
    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.Comment: 24 pages, 7 figures. A revie

    Theory and applications of atomic and ionic polarizabilities

    Get PDF
    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wave functions, interferometry with atom beams, and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards.Comment: Review paper, 44 page

    A Search for Jet Handedness in Hadronic Z0Z^0 Decays

    Get PDF
    We have searched for signatures of polarization in hadronic jets from Z0qqˉZ^0 \to q \bar{q} decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
    corecore