213 research outputs found

    Metabolic phenotyping and strain characterisation of pseudomonas aeruginosa Isolates from cystic fibrosis patients using rapid evaporative ionisation mass spectrometry

    Get PDF
    Rapid evaporative ionisation mass spectrometry (REIMS) is a novel technique for the real-time analysis of biological material. It works by conducting an electrical current through a sample, causing it to rapidly heat and evaporate, with the analyte containing vapour channelled to a mass spectrometer. It was used to characterise the metabolome of 45 Pseudomonas aeruginosa (P. aeruginosa) isolates from cystic fibrosis (CF) patients and compared to 80 non-CF P. aeruginosa. Phospholipids gave the highest signal intensity; 17 rhamnolipids and 18 quorum sensing molecules were detected, demonstrating that REIMS has potential for the study of virulence-related metabolites. P. aeruginosa isolates obtained from respiratory samples showed a higher diversity, which was attributed to the chronic nature of most respiratory infections. The analytical sensitivity of REIMS allowed the detection of a metabolome that could be used to classify individual P. aeruginosa isolates after repeated culturing with 81% accuracy, and an average 83% concordance with multilocus sequence typing. This study underpins the capacities of REIMS as a tool with clinical applications, such as metabolic phenotyping of the important CF pathogen P. aeruginosa, and highlights the potential of metabolic fingerprinting for fine scale characterisation at a sub-species level

    Endothelial Cells Obtained from Patients Affected by Chronic Venous Disease Exhibit a Pro-Inflammatory Phenotype

    Get PDF
    The inflammatory properties of vein endothelium in relation to chronic venous disease (CVD) have been poorly investigated. Therefore, new insights on the characteristics of large vein endothelium would increase our knowledge of large vessel physiopathology. METHODOLOGY/PRINCIPAL FINDINGS: Surgical specimens of veins were obtained from the tertiary venous network (R3) and/or saphenous vein (SF) of patients affected by CVD and from control individuals. Highly purified venous endothelial cell (VEC) cultures obtained from CVD patients were characterized for morphological, phenotypic and functional properties compared to control VEC. An increase of CD31/PECAM-1, CD146 and ICAM-1 surface levels was documented at flow cytometry in pathological VEC with respect to normal controls. Of note, the strongest expression of these pro-inflammatory markers was observed in VEC obtained from patients with more advanced disease. Similarly, spontaneous cell proliferation and resistance to starvation was higher in pathological than in normal VEC, while the migratory response of VEC showed an opposite trend, being significantly lower in VEC obtained from pathological specimens. In addition, in keeping with a higher baseline transcriptional activity of NF-kB, the release of the pro-inflammatory cytokines osteoprotegerin (OPG) and vascular endothelial growth factor (VEGF) was higher in pathological VEC cultures with respect to control VEC. Interestingly, there was a systemic correlation to these in vitro data, as demonstrated by higher serum OPG and VEGF levels in CVD patients with respect to normal healthy controls. CONCLUSION/SIGNIFICANCE: Taken together, these data indicate that large vein endothelial cells obtained from CVD patients exhibit a pro-inflammatory phenotype, which might significantly contribute to systemic inflammation in CVD patients

    Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus

    Get PDF
    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species

    Search for the standard model Higgs boson at LEP

    Get PDF
    • 

    corecore