94 research outputs found

    A molecular investigation of the novel gene underlying autosomal dominant retinitis pigmentosa in a South African family

    Get PDF
    The inherited retinal degenerative disorders are a common cause of severe visual handicap in the W estem world. Retinitis pigmentosa (RP) is a group of retinopathies in which a primary feature is a progressive loss of photoreceptor and retinal pigment epithelium function. Over the last decade, investigations into the patho-physiology of RP have identified numerous disease-causing genes and loci (for a current listing refer to the web site http://www.sph.uth.tmc.edu/Retnet/). A study of a South African family with an autosomal dominant form of RP (adRP) forms the basis of this dissertation. In this family, comprising 44 individuals, the first manifestation of visual disturbance is usually evident between 20 and 30 years of age. Subsequently, another South African adRP family, consisting of 25 members, was also incorporated into this investigation. Genetic linkage analysis facilitated the mapping of the disease phenotype in the two South African adRP families to a 10 cM interval on chromosome 17q22. This novel locus, designated RP17, is the eighth identified for adRP. Haplotype construction in the two kindreds, in conjunction with multipoint analyses subsequently fine mapped RP17 to a 1 cM region between microsatellite markers D17S1604 and D17S948. Although the two families are from ethnically diverse population groups, they share the same disease-associated haplotype spanning 12 cM, which suggests that the disorder may be caused by the same pathogenic mutation in the same gene. The positional cloning approach was utilised in an endeavour to identify the RP17 gene and an attempt was made to construct a physical map of the 1 cM critical region. A contig consisting of seven yeast artificial chromosome (YAC) clones was assembled using sequence-tagged-site (STS) content mapping. In order to close a gap in the YAC contig, a bacterial artificial chromosome (BAC) library was screened and the vectorette PCR technique was used to verify overlapping sequences. This contig should provide a useful tool for the purpose of isolating genes or transcription units within the RP17 critical interval. In this regard, purified YAC DNA was isolated using pulsed-field gel electrophoresis and the cDNA selection technique was employed to generate a transcription map. This approach was applied to YAC 75Ic12 using a foetal brain cDNA library, and two rounds of selection were performed to create a sub-library for enriched cDNAs derived from this clone. Screening for the presence of contaminating sequences in the 480 transformants revealed that (i) approximately 7% of the selected clones contain COT-1 DNA and (ii) none of the clones were contaminated with yeast AB1380 DNA. Ten randomly chosen clones were sequenced and subjected to BLASTN analysis, which revealed the presence of a 23 bp contaminant, known genes as well as novel transcripts. In order to optimise efforts to isolate the adRP gene, four positional candidates residing on 17q were screened for evidence implicating them in the adRP phenotype in the two 17q22-linked families. The genes investigated were: PDEG (gamma subunit of rod phosphodiesterase), TIMP2 (tissue inhibitor of metalloproteinases-2), PKCA (protein kinase C alpha) and retinal fascin. These candidates were chosen on the basis of (i) mapping to 17q, (ii) expression in the retina and/or (iii) potential involvement in the rod phototransduction pathway. Recombination events between the adRP locus and a single strand conformation polymorphism (SSCP) in PDEG, and a restriction fragment length polymorphism (RFLP) in TIMP2 provided evidence for the exclusion of these candidate genes. A novel SSCP detected in the promoter region of retinal fascin was genotyped in the two adRP families and showed a lack of co-segregation with the disease locus. Furthermore, direct DNA sequencing of the coding regions as well as the promoter region of retinal fascin in RP affected family members did not reveal any pathogenic mutations. In addition, data is provided which suggests that PKCA does not reside on any of the YACs and BACs encompassing the RP17 critical interval. This gene is therefore unlikely to be responsible for the adRP phenotype in the two RP17-linked families. Ultimately, the work reported in this thesis may contribute to the body of knowledge on inherited retinal degenerative disorders. Moreover, this investigation should provide the basis for further study of the aetiology of RP in all families linked to the RP17 locus on chromosome 17q22. The immediate application of these molecular findings is the potential for pre-symptomatic testing of at-risk members from the two adRP kindreds

    The role of genetics in racial categorisation of humans

    Get PDF
    CITATION: Bardien-Kruger, S. & Muller-Nedebock, A. 2020. The role of genetics in racial categorisation of humans, in Jansen, J. & Walters, C. (eds). 2020. Fault lines : a primer on race, science and society. Stellenbosch: SUN PReSS, doi:10.18820/9781928480495/01.The original publication is available at https://africansunmedia.store.it.si/zaOnly very recently in the history of modern humans have we learned how to read the stories hidden in our DNA. The ability to read and interpret DNA has revealed that many things are not as they are perceived to be. For instance, physical features between two people may be strikingly different and therefore be taken to mean that the individuals are fundamentally different, when in fact the DNA of any two humans is almost identical (99.9% the same) on a genetic level. Given the physical differences apparent between populations, much research has gone into studying what makes them different. This type of research, no matter how well intentioned, has led to the pseudoscientific arguments used to justify movements such as the slave trade, the eugenics movement and apartheid in South Africa. Scientists at Stellenbosch University have also played a significant role in highlighting the ‘racial’ differences in the South African population. One such study is the nowretracted Sport Science article.1 In this study, the authors, albeit unwittingly, reinforce racial stereotyping by concluding that so‑called ‘coloured’ women in South Africa have lower cognitive functioning when compared to American age-standardised norms, and that this is due to exposure to a variety of factors with known negative effects on cognitive function. In an attempt to shed some light on the inaccuracies of the assumptions on which this article is based, this chapter will provide some background to racial categorisation from a genetic perspective. It will start with basic concepts in genetics and then expand into some of the more complex concepts and theories supporting the fact that there is no genetic basis for race in humans.Publisher's versio

    Huntington disease-like 2 in South Africa

    Get PDF

    Aminoglycoside-induced hearing loss: South Africans at risk

    Get PDF
    South Africa is currently experiencing a TB epidemic with an estimated incidence of 940/100 000 population/year, and the country has been ranked 4th among the 22 high-burden TB countries worldwide by the World Health Organization (WHO). A potentially devastating threat to TB control is the emergence of multidrug-resistant TB (MDR-TB) and, more recently, extensively drug-resistant TB (XDR-TB), mainly as a result of poor drug adherence by TB patients and incorrect management or treatment regimens by health providers; however, direct transmission of drug-resistant strains also plays an important role. The MDR/XDR-TB strains necessitate prolonged chemotherapy for up to 2 years or more, and the use of more toxic second-line drugs including the aminoglycoside (streptomycin, kanamycin and amikacin) and polypeptide (capreomycin) antibiotics. In South Africa, in accordance with WHO guidelines, streptomycin is used for retreatment of TB while kanamycin, amikacin and capreomycin are used to treat MDR/XDR-TB

    Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders

    Get PDF
    Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders

    Clinical findings and genetic screening for copy number variation mutations in a cohort of South African patients with Parkinson’s disease

    Get PDF
    Background. Parkinson’s disease (PD), with a prevalence of up to 4% in Western countries, appears to be less common in Africa, possibly in part because of genetic factors. African studies investigating the genetic causation of PD are limited.Objective. To describe the clinical and genetic findings in a group of black South African patients with PD.Methods. All black African patients with PD from a tertiary hospital neurology clinic were examined. Symptoms were scored according to the Unified Parkinson’s Disease Rating Scale (UPDRS), and patients were classified according to motor features. Genomic DNA was extracted and multiplex ligation-dependent probe amplification was used for detection of copy number variation (CNV) mutations in the known PD-causing genes.Results. Sixteen patients were identified (ages 56 - 82 years). Three had a family history of PD. Classification into motor subtypes showed 44% mixed, 31% akinetic-rigid, and 25% tremor-dominant subtypes. UPDRS scores ranged from 7 to 88, with dementia in 20%. No patient had G2019S LRRK2 and A30P SNCA mutations, and all except one had no CNV mutations in the known PD-causing genes. A female patient (age of onset 50 years, no family history) had a parkin gene heterozygous deletion of exon 4. She had hyperreflexia, bilateral Hoffmann’s reflexes, normal plantar responses and no dystonia.Conclusion. This group of black African patients showed similar characteristics to patients in Western studies, possibly with a higher proportion having tremor-dominant disease. Genetic analysis showed one parkin gene mutation. The limited knowledge on PD-causing genes and mutations in black populations warrants further studies involving next-generation sequencing approaches

    Arrhythmogenic right ventricular cardiomyopathy type 6 (ARVC6): support for the locus assignment, narrowing of the critical region and mutation screening of three candidate genes

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable disorder characterized by progressive degeneration of right ventricular myocardium, arrhythmias and an increased risk of sudden death at a young age. By linkage analysis, ARVC type 6 was previously mapped to a 10.6 cM region on chromosome 10p12-p14 in a large North American kindred. To date, the genetic defect that causes ARVC6 has not been identified. METHODS: We identified a South African family of 13 members with ARVC segregating as an autosomal dominant disorder. The diagnosis of ARVC was based on international diagnostic criteria. All available family members were genotyped with microsatellite markers at six known ARVC loci, and positional candidate gene screening was performed. RESULTS: Genetic linkage and haplotype analysis provided lod scores that are highly suggestive of linkage to the ARVC6 locus on chromosome 10p12-p14, and the narrowing of the critical region to ~2.9 Mb. Two positional candidate genes (ITG8 and FRMD4A) were screened in which defects could possibly disrupt cell-cell adhesion. A non-positional candidate gene with apoptosis inducing properties, LAMR1P6 (laminin receptor 1 pseudogene 6) was also screened. Direct sequencing of DNA from affected individuals failed to detect disease-causing mutations in the exonic sequences of the three genes investigated. CONCLUSION: The narrowing of the ARVC6 critical region may facilitate progress towards the identification of the gene that is involved in ARVC. Identification of the causative genes for ARVC will contribute to the understanding of the pathogenesis and management of this poorly understood condition

    Identification of a common founder couple for 40 South African Afrikaner families with Parkinson’s disease

    Get PDF
    Background. Afrikaners are a unique ethnic group in South Africa (SA) with well-documented ancestral records spanning a period of over 350 years. They are mainly descended from Dutch, German and French settlers to SA in the 17th and 18th centuries. Today several disorders in this population occur at relatively high frequencies as a result of founder effects.Objective. To determine whether a founder effect for Parkinson’s disease (PD) is present in the Afrikaner population.Methods. Study participants were recruited from the Movement Disorders Clinic at Tygerberg Hospital in Cape Town, SA, and from support groups of the Parkinson’s Association of South Africa. Standard methods for genealogical research in SA on hereditary diseases were used including interviews and searches in sources such as state archives, the Huguenot Museum in Franschhoek, marriage and baptismal records, and tombstone inscriptions.Results. For 40 of the PD families, there was only a single most recent ancestral couple common to all of the families. On average there are between three and four ancestral lines to the founder couple per proband (range 1 -14).Conclusion. If genetic studies confirm the presence of a founder effect for PD in Afrikaners, this would imply that there is a large number of individuals from this ethnic group who may potentially be at risk of developing this debilitating condition. This study illustrates and reinforces the concept that genealogical analysis is a powerful tool for identification of founder effects for various disorders in the Afrikaner population

    Rutin as a potent antioxidant: implications for neurodegenerative disorders

    Get PDF
    A wide range of neurodegenerative diseases (NDs), including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and prion diseases, share common mechanisms such as neuronal loss, apoptosis, mitochondrial dysfunction, oxidative stress, and inflammation. Intervention strategies using plant-derived bioactive compounds have been offered as a form of treatment for these debilitating conditions, as there are currently no remedies to prevent, reverse, or halt the progression of neuronal loss. Rutin, a glycoside of the flavonoid quercetin, is found in many plants and fruits, especially buckwheat, apricots, cherries, grapes, grapefruit, plums, and oranges. Pharmacological studies have reported the beneficial effects of rutin in many disease conditions, and its therapeutic potential in several models of NDs has created considerable excitement. Here, we have summarized the current knowledge on the neuroprotective mechanisms of rutin in various experimental models of NDs. The mechanisms of action reviewed in this article include reduction of proinflammatory cytokines, improved antioxidant enzyme activities, activation of the mitogen-activated protein kinase cascade, downregulation of mRNA expression of PD-linked and proapoptotic genes, upregulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes. Taken together, these findings suggest that rutin may be a promising neuroprotective compound for the treatment of NDs

    Factors influencing the development of early- or late-onset Parkinson’s disease in a cohort of South African patients

    Get PDF
    Background. Neurodegenerative disorders such as Parkinson’s disease (PD) contribute significantly to global disease burden. PD can be categorised into early-onset PD (EOPD) with an age at onset (AAO) of ≤50 years and late-onset PD (LOPD) with an AAO of 50 years. Aims. To identify factors influencing EOPD and LOPD development in a group of patients in South Africa (SA). Methods. A total of 397 unrelated PD patients were recruited from the Movement Disorders Clinic at Tygerberg Hospital and via the Parkinson’s Association of SA. Patient demographic and environmental data were recorded and associations with PD onset (EOPD v. LOPD) were analysed with a Pearson’s Chi-squared test. The English- and Afrikaans-speaking (Afrikaner) white patients were analysed separately. Results. Logistic regression analysis showed that ethnicity (
    • …
    corecore