151 research outputs found

    Reduction of myocardial infarction by postischemic administration of the calpain inhibitor A-705253 in comparison to the Na(+)/H(+) exchange inhibitor Cariporide (R) in isolated perfused rabbit hearts

    Get PDF
    The calpain inhibitor A-705253 and the Na(+)/H(+) exchange inhibitor Cariporide (R) were studied in isolated perfused rabbit hearts subjected to 60 min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion. The inhibitors were added to the perfusion fluid solely or in combination at the beginning of reperfusion. Hemodynamic monitoring and biochemical analysis of perfusion fluid from the coronary outflow were performed. Myocardial infarct size and area at risk (transiently not perfused myocardium) were determined from left ventricular slices after a special staining procedure with Evans blue and 2,3,5-triphenyltetrazolium chloride. The infarcted area (dead myocardium) was 72.7 +/- 4.0% of the area at risk in untreated controls, but was significantly smaller in the presence of the inhibitors. The largest effect was observed with 10(-6) M A-705253, which reduced the infarcted area to 49.2 +/- 4.1% of the area at risk, corresponding to a reduction of 33.6%. Cariporide (R) at 10(-6) M reduced the infarct size to the same extent. The combination of both inhibitors, however, did not further improve cardioprotection. No significant difference was observed between the experimental groups in coronary perfusion, left ventricular pressure, heart rate, or in the release of lactate dehydrogenase and creatine kinase from heart muscle

    Umsetzung der deutschen Approbationsordnung 2002 im modularen Reformstudiengang Heidelberger Curriculum Medicinale (HeiCuMed)

    Get PDF
    Am 1.10.2003 trat die neue deutsche Approbationsordnung für Ärzte (ÄAppO) in Kraft. Das klinische Lehrangebot sollte dabei in 22 Fächern, 12 Querschnittsbereichen und 5 Blockpraktika angeboten werden. Bereits 1998 begann die medizinische Fakultät der Universität Heidelberg das medizinische Curriculum stärker praktisch und interdisziplinär auszurichten. Dieses neue Curriculum erhielt den Namen HeiCuMed (Heidelberger Curriculum Medicinale). Planung und Organisation von HeiCuMed erfolgte in Kooperation mit verschiedenen universitären und auswärtigen Partnern. Dieser Artikel befasst sich mit der Umsetzung der neuen ÄAppO in HeiCuMed. Dabei wird auch dargestellt, inwiefern in der Literatur beschriebene Prinzipien erfolgreicher Curriculumsreform im Reformprozess beachtet wurden. 09.12.2008 | Sören Huwendiek, M. Kadmon, J. Jünger, M. Kirschfink, H.M. Bosse & F. Resc

    Construction of a consistent YAC contig for human chromosome region 3p14.1

    Get PDF
    Chromosomal deletions and translocations of human chromosome region 3p14 are observed in various human malignancies and suggest the existence of a tumor suppressor gene locus within this region. Tumors most frequently affected by these aberrations are small-cell lung cancer and renal-cell carcinoma. In continuation of our previously published YAC contig of chromosome region 3p14.2-p14.3, we report here on the construction of a YAC contig of at least 11 Mb that consisted of 171 YACs and covers the entire subregion 3p14.1. This contig includes the t(3;8) breakpoint of a hereditary renal-cell carcinoma localized in 3p14.2 and extends into human chromosome region 3p12-p13. It defines the order of 34 DNA probes in relation to reference markers D3S6 and D3S30 as well as the human protein tyrosine phosphatase-gamma gene. For 31 DNA probes we identified nonchimeric YACs by fluorescence in situ hybridization. The minimal tiling pathway consists of 16 yeast artificial chromosomes. As a prerequisite for identification of a putative tumor suppressor gene within this region, this contig renders human chromosome region 3p14.1 accessible to gene isolation

    Tetrahydrouridine Inhibits Cell Proliferation through Cell Cycle Regulation Regardless of Cytidine Deaminase Expression Levels

    Get PDF
    Tetrahydrouridine (THU) is a well characterized and potent inhibitor of cytidine deaminase (CDA). Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299) exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells
    • …
    corecore