

University of Groningen

Construction of a consistent YAC contig for human chromosome region 3p14.1

Bardenheuer, W.; Michaelis, S.; Lux, A.; Vieten, L.; Brocker, F.; Julicher, K.; Willers, C.; Siebert, R.; Smith, D. I.; vanderHout, A. H.

Published in: Genome Research

DOI: 10.1101/gr.6.3.176

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Bardenheuer, W., Michaelis, S., Lux, A., Vieten, L., Brocker, F., Julicher, K., ... Opalka, B. (1996). Construction of a consistent YAC contig for human chromosome region 3p14.1. Genome Research, 6(3), 176-186. https://doi.org/10.1101/gr.6.3.176

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

RESEARCH

Construction of a Consistent YAC Contig for Human Chromosome Region 3p14.1

Walter Bardenheuer,¹ Susanne Michaelis,¹ Andreas Lux,¹ Lydia Vieten,¹ Frank Bröcker,¹ Knut Jülicher,¹ Christoph Willers,¹ Reiner Siebert,¹ David I. Smith,² Annemarie H. van der Hout,³ Charles Buys,³ Jochen Schütte,^{1,4} and Bertram Opalka^{1,4}

¹Innere Klinik und Poliklinik (Tumorforschung), Universitätsklinikum Essen, Westdeutsches Tumorzentrum, 45122 Essen, Germany; ²Institute of Molecular Biology, Wayne State University, Detroit, Michigan 48201; ³Department of Medical Genetics, University of Groningen, Groningen, Netherlands

Chromosomal deletions and translocations of human chromosome region 3pl4 are observed in various human malignancies and suggest the existence of a tumor suppressor gene locus within this region. Tumors most frequently affected by these aberrations are small-cell lung cancer and renal-cell carcinoma. In continuation of our previously published YAC contig of chromosome region 3pl4.2–pl4.3, we report here on the construction of a YAC contig of at least II Mb that consisted of 17I YACs and covers the entire subregion 3pl4.1. This contig includes the t(3;8) breakpoint of a hereditary renal-cell carcinoma localized in 3pl4.2 and extends into human chromosome region 3pl2–pl3. It defines the order of 34 DNA probes in relation to reference markers D3S6 and D3S30 as well as the human protein tyrosine phosphatase- γ gene. For 31 DNA probes we identified nonchimeric YACs by fluorescence in situ hybridization. The minimal tiling pathway consists of 16 yeast artificial chromosomes. As a prerequisite for identification of a putative tumor suppressor gene within this region, this contig renders human chromosome region 3pl4.1 accessible to gene isolation.

The short arm of human chromosome 3 is frequently affected by chromosomal deletions and translocations as determined by cytogenetical and loss-of-heterozygosity (LOH) studies in many types of human tumors. Among these are smallcell (SCLC) and non-small-cell lung cancer (NSCLC) (Brauch et al. 1987; Kok et al. 1987; Naylor et al. 1987; Yokota et al. 1987; Johnson et al. 1988; Becker and Sahin 1989; Mori et al. 1989; Rabbitts et al. 1989; Weston et al. 1989; Hibi et al. 1991, 1992; Yokoyama et al. 1992), renal-cell carcinoma (RCC) (Zbar et al. 1987; Bergerheim et al. 1989; Morita et al. 1991), head and neck carcinoma (Latif et al. 1992), breast cancer (Devilee et al. 1989; Sato et al. 1991), ovarian cancer (Whang-Peng 1984; Trent et al. 1985; Ehlen and Dubeau 1990), cervix carcinoma (Yokota et al. 1989; Kohno et al. 1993; Jones et al. 1994), and testis carcinoma (Lothe et al. 1989).

Functional analysis and LOH studies may suggest the existence of one or more tumor suppressor gene loci in human chromosome region

E-MAIL bertram.opalka@uni-essen.de; FAX +49 201-723-5925/2020.

(HCR) 3p13-p21.1. In particular, HCR 3p14 contains the translocation breakpoint t(3;6) associated with hematological malignancies (Markkanen et al. 1987), as well as the translocation breakpoints t(3;6) in 3p14.1 (Kovacs et al. 1989; van den Berg et al. 1995) and t(3:8) in 3p14.2 (Cohen et al. 1979; Wang and Perkins 1984; Drabkin et al. 1985) that are associated with hereditary RCC. Although two of these breakpoints were cloned recently (Boldog et al. 1993; Smith et al. 1993), no tumor suppressor gene close to them has been published to date. Recently, clustering of terminal deletion breakpoints in nonpapillary RCC was reported (Wilhelm et al. 1995); in this study, the most distal breakpoint mapped to HCR 3p14.1-p14.2 between markers D3S1285 and D3S1300; this region contains the t(3;8)translocation breakpoint found in a hereditary RCC. In functional analyses, HCR 3p12-p14 but not 3p11-q24 showed suppression of tumorigenicity of an RCC cell line (Sanchez et al. 1994). In addition, a bladder carcinoma cell line whose tumorigenicity was suppressed by the fusion with a cell line showing hemizygous loss of chromosome 3 regained tumorigenicity after loss of chro-

⁴Corresponding authors.

mosome 3p material with the smallest region of deletion ascribed to HCR 3p13–21.2 (Klingelhutz et al. 1992).

As the marker density increased and yeast artificial chromosome (YAC) libraries became available in recent years, a contig covering almost the entire human chromosome 3 (Gemmill et al. 1995), as well as subcontigs for HCR 3p14.2p14.3 (Michaelis et al. 1995) and the distal part of 3p14.1 (Boldog et al. 1994) have been published. In this paper we describe the constuction of a YAC contig for HCR 3p14.1 by PCR-based analysis, Southern blot, and Alu-fingerprint analysis. This contig contains at least 11 Mb of DNA. It includes the RCC t(3;8) translocation breakpoint localized in 3p14.2 and its most proximal probes map to HCR 3p12-p13. This contig defines the order of 24 previously localized "sequencetagged sites" (STSs) (Bardenheuer et al. 1994) and 10 new DNA probes in relation to the human protein tyrosine phosphatase- γ (HPTP γ) gene and reference markers D3S6 and D3S30. Thus, it may provide a valuable tool for the identification and analysis of expressed sequences within this putative tumor suppressor gene region.

RESULTS

Analysis of 3p14.1-specific YACs

Twenty-five of the 39 DNA probes used in this study for the isolation of YACs have been described previously (Michaelis et al. 1995). In addition, seven microsatellite markers, three reference markers, two YAC end probes, one Alu-PCR product, and the gene for HPTP γ were included in the contig. YAC clones were identified by defining the DNA probe content of the CEPH YAC and Mega-YAC libraries (Bardenheuer et al. 1994). For the 39 DNA probes analyzed in this study, a total of 182 YACS were found, 171 of which could be assembled into a contig. The contig contains 37 of the 39 probes analyzed. Characteristics and DNA probe content of individual YACs are summarized in Table 1.

The average sizes of the YACs were 500 kb ranging from 150 to 1770 kb for YAC coordinates 1A1 to 735H12 and 1400 kb ranging from 90 to 2500 kb for coordinates 736H1 to 984H12 (Mega-YAC library). FISH analyses of 76 YACs revealed a frequency of chimerism of 41% (Table 1).

Construction of a YAC Contig for HCR 3pl4.1

Analysis of the DNA probe content of YACs al-

lowed the identification of overlapping YAC clones. For each DNA probe, an average of 9.2 YACs (range 1–23) was identified. By inclusion of Alu-fingerprint analysis of three YACs, it was possible to construct a contig for HCR 3p14.1 that contains reference markers D3S6 and D3S30, the HPTP γ gene, and 34 DNA probes. The entire contig covers an estimated size of >11 Mb of DNA (Fig. 1). The estimation of the size of the contig was performed by aligning nonoverlapping, non-chimeric YACs and thus gives the minimum size of the region of interest.

The distal boundary of the contig is marked by STS D3S1388 and 1A2 that map distal to the RCC t(3;8) translocation breakpoint in HCR 3p14.2. The most proximal STS in the contig— D3S1405—maps to HCR 3p13 and is localized distal to the distal boundary of the U2020 homozygous deletion in 3p12–p13. Thus, the contig completely covers HCR 3p14.1. A minimal tiling pathway for HCR 3p14.1 as defined in this study can be assembled with 16 of the 171 YACs (Fig. 1).

DISCUSSION

Structural and functional analyses in many human tumor types have suggested that HCR 3p14 contains a putative tumor suppressor gene region (Hibi et al. 1992). The 3p14.1-specific YAC contig presented here, together with our previous report on a 3p14.2–14.3-specific contig (Michaelis et al. 1995) completes our efforts to construct a YAC contig of the entire putative tumor suppressor gene region 3p14. In particular, this contig completes the work of our group to obtain a highdensity STS map of HCR 3p14 as well as the availability of a large number of nonchimeric YACs for functional analyses and expression mapping.

The assembly of this contig was possible owing to the availability of 3p14.1-specific STSs derived from a 3p14-specific microdissection library (Bardenheuer et al. 1994). With the redundance of YAC clones for each DNA probe shown here, the order of the probes should be reliable.

The contig presented here is in accordance with the corresponding region of the chromosome 3 contig published by Gemmill et al. (1995). Interestingly, Gemmill et al. (1995) described one Alu fingerprint that links YACs 892d2 and 178a3, with YAC 258b7 covering the region but not containing the Alu fingerprint. In our study, probe D3A1217 links all of the three above-mentioned YACs and therefore gives a re-

Table 1.	DNA probe/re	ference marker cont	tent of YACs	
YAC	Size (kb)	Localization (by FISH)	Chimeric	DNA probe content
65E7	620	3p14	_	D3S1388(IIIB5)/1A2/D3S1401- (IVH10)/D3S1391(IF8)
74B2 621H4	440 460	no signal 17q or 18q	? +	1A2 1A2
171B1	640	3p14		D3S1388(IIIB5)/1A2/D3S1401- (IVH10)/D3S1391(IF8)/D3S1397-
850A6	1300	3p14	-	(IVA6) D3S3155(BE758-6)/D3S1388 (111B5)/1A2/D3S1401(IVH10)/ D3S1391(IF8)/D3S1397(IVA6)
743b3	1700	N.D.	N.D.	ΗΡΤΡγ (phosphatase gamma)
130H11 143C5	220 N.D.	3p14 3p14 + G/D-group	- +	3B6 3B6
880F2	N.D.	N.D.	N.D.	3B6
959h4	1160	N.D.	N.D.	3B6/D3S1394(IIIE12)
326F12 161G11 166G8 248A5 288H1 633e4 734h8 746e6 761g4 784f12 807c10 934f8 927el 858a8 807e10 770h8 933d5 965h3 977c8 725A5 882d9	350 N.D. 470 N.D. N.D. N.D. 370 890 1020 1380 N.D. 1380 N.D. 1760 1090 1210 N.D. N.D. 1760 1090 1210 N.D. N.D. 1690 900 840	3p14 + C-group N.D. 3p13-p14 3p14 + C-group + D-group N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	+ N.D. - + N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.	D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1) D351394(IIIE12)/D351400(IVH1)
138G6 194C7 144G3 186H3 194B5 430C2 444D6 369B2 371H4 419C5 965a3	400 150 700 650 170 440 750 N.D. 280 + 430 190 1490	3p14 N.D. 3p14 3p14 + D-group N.D. 3p14 + G/D-group 3p14 + D-group 3p14 N.D. N.D. N.D.	- N.D. + N.D. + + N.D. N.D. N.D.	D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1) D3S1400(IVH1)/D3S1285

Table 1.	(Continued)			
YAC	Size (kb)	Localization (by FISH)	Chimeric	DNA probe content
936g11	N.D.	N.D.	N.D.	D3S1400(IVH1)/D3S1285
811F12	1740	N.D.	N.D.	D3\$1285/D3\$1403(VB11)/W3.2
75H2 94B10 376E8	N.D. 500 N.D.	3p14 3p14 N.D.	- - N.D.	D3S1403(VB11) D3S1403(VB11) D3S1403(VB11)
794h5 953a12	N.D. 1760	N.D. N.D.	N.D. N.D.	D3S1403(VB11)/W3.2 D3S1403(VB11)/W3.2
984b9	1100	N.D.	N.D.	D3S1403(VB11)/W3.2/
237B7	540	3p14		D3S1404(VC4) D3S1403(VB11)/W3.2/ D3S1404(VC4)
925e3	1800	3p14	-	D3S1403(VB11)/W3.2/D3S1404- (VC4)/D3S1437(XID11)
590G3 934h6 838g6 838g7 900g10 901g10 902g10	150 N.D. N.D. N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	W3.2 W3.2 W3.2 W3.2 W3.2 W3.2 W3.2 W3.2
238H10 446E7 625E12 640C7 698H8	400 440 N.D. N.D. 580	3p14 3p14 N.D. N.D. 3p13–p14 + 3p24 +	- N.D. N.D. +	W3.2/D3S1404(VC4) W3.2/D3S1404(VC4) W3.2/D3S1404(VC4) W3.2/D3S1404(VC4) W3.2/D3S1404(VC4)
6F10 131H10 9F1	350 N.D. 420	3p13–p14 N.D. 3p13–p14	_ N.D. _	W3.2/D3S1404(VC4) W3.2/D3S1404(VC4) W3.2/D3S1404(VC4)
769g8	800	N.D.	N.D.	W3.2/D3S1404(VC4)/D3S1437 (XID11)/Alu578
879F9	N.D.	N.D.	N.D.	W3.2/D3S1404(VC4)/ D3S1437(XID11)/ Alu578/654L
194H11	340	3p14	_	D3\$1404(VC4)
70e12	340	N.D.	—	D3S1437(XID11)/Alu578
178a3	470	N.D.	N.D.	654L/D3\$1217
258b7	820	N.D.	N.D.	D3S1217
892d2	N.D.	N.D.	N.D.	D3S1217/AFM289vb5
961a9	1460	N.D.	N.D.	AFM289vb5/D3S1392- (IIE2)/2H1
89C1 206B3 210H12 277B12 372F6	375 540 + 480 400 340 + 250 350	3p13–p14 3p14 3p14 + 5q 3p14 3p14	 + 	D3S1392(IIE2) D3S1392(IIE2) D3S1392(IIE2) D3S1392(IIE2) D3S1392(IIE2)

BARDENHEUER ET	AL.
----------------	-----

Table 1.	(Continued)			
ΥΑϹ	Size (kb)	Localization (by FISH)	Chimeric	DNA probe content
432D9 957d4	370 N.D.	3p14 N.D.	 N.D.	D3S1392(IIE2) D3S1392(IIE2)
983a5 951f1 393B8	N.D. N.D. 350	N.D. N.D. 3p14	N.D. N.D. 	D3S1392(IIE2)/2H1 D3S1392(IIE2)/2H1 D3S1392(IIE2)/2H1
932h9	1400	N.D.	N.D.	D3S1392(IIE2)/2H1/D3S1395(IVA4)/ D3S1393(IIIE1)
940f6	90	N.D.	N.D.	D3S1392(IIE2)/2H1/D3S1395(IVA4)/ D3S1393(IIIE1)
890d7	2000	3р13-р14	-	D3S1392(IIE2)/2H1/D3S1395- (IVA4)/D3S1393(IIIE1)/D3S1261, 2B6/D3S1398(IVD2)/D3S1399- (IVE1)/D3S1389(IA3)/D3S1296
628E8 763c3 858c8	N.D. N.D. N.D.	N.D. N.D. N.D.	N.D. N.D. N.D.	2H1 2H1 2H1
616A10 707H9 632E4 181H6 293D1	870 250 850 600 250 + 850	N.D. D-group 3p12–p13 + p14 3p13 + 3p14 3p14 + 1p21 + 1p31 +	N.D. + + - +	D3S1395(IVA4)/D3S1393(IIIE1) D3S1395(IVA4)/D3S1393(IIIE1) D3S1395(IVA4)/D3S1393(IIIE1) D3S1395(IVA4)/D3S1393(IIIE1)
		C-group + G/D-group		D3S1395(IVA4)/D3S1393(IIIE1)
415F7	420	3p14	_	D3S1395(IVA4)/D3S1393(IIIE1)
675F12	1300	3p13–p14	+	D3S1395(IVA4)/D3S1393(IIIE1)/ D3S1261/2B6/D3S1398(IVD2)/ D3S1399(IVE1)/D3S1389(IA3)
932h2	N.D.	N.D.	N.D.	D3S1395(IVA4)/D3S1393(IIIE1)/ D3S1261/2B6/D3S1398(IVD2)/ D3S1399(IVE1)
757g3	N.D.	N.D.	N.D.	D3S1395(IVA4)/ D3S1393(IIIE1)/D3S1261
933a9	1500	N.D.	N.D.	D31261/2B6/D3S1398(IVD2)/ D3S1399(IVE1)/D3S1389(IA3)
925c9	N.D.	N.D.	N.D.	D3S1261/2B6/D3S1398(IVD2)/ D3S1399(IVE1)/D3S1389(IA3)/ D3S1296/108R/D3S1566
318G6 515H4 654C5 666F7 929a9 752f5 966f8 852e9 939a3 408B8	320 550 510 660 1600 1390 N.D. N.D. N.D. 150	3p24–p24 C-group C-group N.D. N.D. N.D. N.D. N.D. N.D. 3p13–p14 +	- + N.D. N.D. N.D. N.D. N.D. +	2B6 2B6 2B6 2B6 2B6 2B6 2B6 2B6 2B6 2B6

Table 1.	(Continued)			
YAC	Size (kb)	Localization (by FISH)	Chimeric	DNA probe content
248C10	400	3p13–p14 +	+	2B6/D3S1398(IVD2)
309C11	300	3p13–p14 +	+	2B6/D3S1398(IVD2)
169B5	280 + 400	3p13-p14	_	2B6/D3S1398(IVD2)
56C5	820	N.D.	N.D.	2B6/D3S1398(IVD2)
163A9	440	3p13-p14 + G/D-aroup	+	2B6/D351398(IVD2)
158B6	400	3p13–p14 + G/D-group	+	2B6/D3S1398(IVD2)
261C12 280G2	730 N.D.	3p13–p14 + 1q N.D.	+ N.D.	2B6/D3S1398(IVD2) 2B6/D3S1398(IVD2)
754d9	N.D.	N.D.	N.D.	D3S1399(IEV1)/D3S1389(IA3)/ D3S1296/108R/D3S1566
90C8	410	3p14	_	D3S1389(IA3)
154D3	320	3p14		D3S1389(IA3)
0/962	IN.D.	N.D.	N.D.	
792d9	N.D.	N.D.	N.D.	D351389(IA3)/D351296/108R
879d2	N.D.	N.D.	N.D.	D3S1389(IA3)/D3S1296/108R
798g10	N.D.	N.D.	N.D.	D3S1389(IA3)/D3S1296/108R/
801a2	N.D.	N.D.	N.D.	D3S1389(IA3)/D3S1296/108R/ D3S1566
692a6	N.D.	N.D.	N.D.	D3S1389(IA3)/108R/D3S1566
942e4	N.D.	N.D.	N.D.	D3S1296/108R
943d10	N.D.	N.D.	N.D.	D3S1296/108R
957A5	N.D.	N.D.	N.D.	D3\$1296/108R/D3\$1566/D3\$1562
762c6	N.D.	N.D.	N.D.	108R/D3S1566
791e8 914c8	N.D. N D	N.D. N D	N.D. N.D	108R/D351566 108R/D351566
853B9	N.D.	N.D.	N.D.	108R/D3S1566/D3S1562
934a10	N.D.	N.D.	N.D.	D3S1562
944B3	1640	N.D.	N.D.	108R/D3S1566/D3S1562/2A5
808B10	1500	3p14	-	D3S1566/D3S1562/2A5
808c10	N.D.	N.D.	N.D.	108R/D3S1566/D3S1562/2A5/D3S6
869d7	N.D.	N.D.	N.D.	108R/D3S1566/D3S1562/2A5/D3S6
976e4	N.D.	N.D.	N.D.	108R/D3S1566/D3S1561/2A5/D3S6
760A5	2500	spis	-	108K/D331566/D331562/2A5/ D3S6
757H10	1000	3p13-p14	-	2A5
2103	510	3p13–p14 + 14 or 15p	+	2A5
79C11 96C1	430 630	3p13-p14 3n13-n14		2A5 2A5
201F6	390	N.D.	N D	2A5
698G8	930	3p13–p14 +	+	2A5
325F3	370	D-group 3p14	Name -	2A5

Table 1.	(Continued)			
YAC	Size (kb)	Localization (by FISH)	Chimeric	DNA probe content
869D7	1500	N.D.	N.D.	2A5
308F11	880	3p14 + others	+	D3S6/D3S1390(IA11)
884D6 676H5 976E4	860 1530 1425	3p13–p14 3p14 N.D.	– – N.D.	2A5/D3S6 2A5/D3S6 2A5/D3S6
873e10	N.D.	N.D.	N.D.	D3S6/D3S1390(IA11)/D3S30/ 2C5/D3S1405(VIG10)
940e8	N.D.	N.D.	-	D351390(IA11)/D3530/2C5/ D351405(VIG10)
146F3	350	3p13-p14 + 2q23-q24	+	D3S1390(IA11)
145F3 147F3 148F3 958c3 850e3 948a7 737a4	600 520 410 N.D. N.D. N.D. N.D.	2q22 4q13 C-group N.D. N.D. N.D. N.D.	+ + N.D. N.D. N.D. N.D.	D3S1390(IA11) D3S1390(IA11) D3S1390(IA11) D3S1390(IA11) D3S1390(IA11) D3S1390(IA11) D3S1390(IA11) D3S1390(IA11)
802D1 821C10 981C11	2000 480 2000	3p12–p13 3p12–p13 3p12–p13 + 18	- - +	2C5/D3S1405(VIG10) 2C5/D3S1405(VIG10) 2C5/D3S1405(VIG10)
332F8 729C2	410 1770	3p12–p13 3p12–p13 + 9q + 3q27–q28 + B-group	- +	D3S1405(VIG10) D3S1405(VIG10)
[gap]				
324F1	280	3p12–p13 + D-group	+	D3S1406(IIIB4)
768a5 768d12 751h12 786d4 814c2	N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D.	D3S1406(IIIB4) D3S1406(IIIB4) D3S1406(IIIB4) D3S1406(IIIB4) D3S1406(IIIB4)
905d2 927c4 872g3 872g10	N.D. N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D. N.D.	N.D. N.D. N.D. N.D. N.D.	D3S1406(IIIB4) D3S1406(IIIB4) D3S1406(IIIB4) D3S1406(IIIB4) D3S1406(IIIB4)
[gap]				
376G4	N.D.	3p12	_	D3S3
VACs are listed from distal to provinal according to their position within the contin. VAC coordinates printed in holdface type				

YACs are listed from distal to proximal according to their position within the contig. YAC coordinates printed in boldface type belong to the minimal tiling pathway. Gaps localized to 3p12-p13 are indicated. CEPH YAC coordinates, YAC sizes, YAC localizations as detected by fluorescence in situ hybridization, and state of chimerism of YACs are given. (-) Nonchimeric; (+) chimeric; (N.D.) not done.

liable confirmation of the overlap described by Gemmill et al. (1995). Furthermore, in the contig

described by Gemmill et al. (1995), YAC D20f4 contains DNA markers that also map to YAC

258b7, but none of these DNA probes map to 892d7 or 178a3. Here, we show that YAC D20f4 is chimeric: its right end probe does not map to chromosome 3, whereas its left end probe does not map to YAC 258b7 but to 3p21.1 as detected by PCR-based analysis of a hybrid mapping panel (Bardenheuer et al. 1994). Thus, the inconsistent STS content of YAC D20f4 described by Gemmill et al. (1995) could be resolved. Overall, there is no inconsistency concerning the DNA probe content of YACs for the DNA probes used in the assembly of our contig.

The overall rate of chimerism detected was 41%, which is in agreement with published data for the CEPH and other YAC libraries (Cohen et al. 1993). Because of the high redundance of our contig, it was possible to obtain nonchimeric YACs for 31 out of the 37 DNA markers contained in the contig. As there remain many YACs to be tested for chimerism by FISH, it should be possible to identify nonchimeric YACs for most if not all of these markers. These YACs may be of considerable value for functional analyses and isolation of transcribed sequences from HCR 3p14.1. Thus, in conclusion, the contig described here, together with the previously published 3p14.2-p14.3 contig may be beneficial for further investigation of this putative tumor suppressor gene region.

METHODS

Localization of STSs and Isolation of YACs

Strategy and techniques for isolation of 3p13-p14.2specific STSs from an HCR 3p14-specific microdissection library, mapping of STSs using a deletion hybrid panel, STS-based screening of the Centre d'Etude du Polymorphisme Humain (CEPH) YAC libraries, separation of yeast chromosomes by pulsed-field gel electrophoresis (PFGE), and isolation of YAC DNA were performed as described previously (Bardenheuer et al. 1994; Michaelis et al. 1995). Isolation of YAC end probes was performed according to Riley et al. (1990), and the Alu-PCR probe was generated according to Lengauer et al. (1992). The sequences for PCR primers of microsatellite markers D3S1261, D3S1285, D3S1296, D3S1562, D3S1566, and D3S1217 were identical to those published by Gyapay et al. (1994) and Hudson et al. (1992); sequences for PCR primers of microsatellite marker AFM289vb5 were kindly provided by D. LePaslier (CEPH, Paris, France). DNA sequencing was performed using an automated DNA sequencer (A.L.F., Pharmacia Biotech, Freiburg, Germany). Southern blot analysis was performed according to standard precedures using Hybond N+ membranes (Amersham, Braunschweig, Germany) and an alkaline transfer method according to the manufacturer's recommendations.

Fluorescence In Situ Hybridization Analysis of YACs

For fluorescence in situ hybridization (FISH) analyses, total yeast DNA containing the respective YAC was used. DNA preparation, labeling of probe, suppression of repetitive sequences with Cot1 DNA, hybridization conditions, and image analyses were performed as described previously (Michaelis et al. 1995).

Contig assembly

Overlapping YAC clones were identified by PCR analyses using STS-specific primers and YAC DNA as template. All PCR analyses were preformed at least twice using the DNA of individual YAC clones as templates. Alu-fingerprinting data were obtained from the CEPH–Généthon data bank (Weissenbach et al. 1992).

ACKNOWLEDGMENTS

W.B. was supported by a fellowship from "Boehringer Ingelheim Fonds," Stuttgart, Germany; S.M. was supported by a fellowship of the Graduiertenkolleg "Normale und maligne Zellen," University of Essen, Germany; FISH analyses were supported by a European Molecular Biology Organization fellowship, Heidelberg, Germany (ASTF 7667). We thank N. Süss-Lobbermeier and Drs. G. Prescher, P. Rabbitts, and A. Heppel-Parton for valuable help with the FISH analyses. We thank D. Le Paslier and D. Cohen for providing YAC clones as well as the Alufingerprint data. Thanks to expert technical assistance by Birgit Todt, Ulrike Müller and Katja Schmidtke. This work was supported by Deutsche Forschungsgemeinschaft, Bonn (SFB 354).

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

REFERENCES

Bardenheuer, W., S. Szymanski, A. Lux., H.-J. Lüdecke, B. Horsthemke, U. Claussen, G. Senger, D.I. Smith, N.-D. Wang, D. LePaslier, D. Cohen, A. Heppell-Parton, P. Rabbitts, J. Schütte, and B. Opalka. 1994. Characterization of a microdissection library from human chromosome region 3p14. *Genomics* **19:** 291–297.

Becker, D. and A.A. Sahin. 1989. Loss of heterozygosity at chromosomal regions 3p and 13q in non-small-cell carcinoma of the lung represents low frequency events. *Genomics* **4**: 97–100.

Bergerheim, U., M. Nordenskjöld and V. Collins. 1989. Deletion mapping in human renal cell carcinoma. *Cancer Res.* **49:** 1390–1396.

Boldog, F.L., R.M. Gemmill, C.M. Wilke, T.W. Glover, A.-S. Nilsson, S.C. Chandrasekharappa, R.S. Brown, F.P. Li, and H.A. Drabkin. 1993. Positional cloning of the hereditary renal carcinoma 3;8 chromosome

translocation breakpoint. Proc. Natl. Acad. Sci. 90: 8509–8513.

Boldog, F.L., B. Waggoner, T.W. Glover, I. Chumakov, D. LePaslier, D. Cohen, R.M. Gemmill, and H.A. Drabkin. 1994. Integrated YAC contig containing the 3p14.2 hereditary Renal Cell Carcinoma 3;8 translocation breakpoint and the fragile site FRA3B. *Genes Chromosomes Cancer* **11**: 216–221.

Brauch, H., B. Johnson, J. Hovis, T. Yano, A. Gazdar, O. Pettengill, S. Graziano, G. Sorenson, B. Poiesz, J. Minna, M. Linehan, and B. Zbar. 1987. Molecular analysis of the short arm of chromosome 3 in small-cell and non-small-cell carcinoma of the lung. *N. Engl. J. Med.* **317:** 1109–1113.

Cohen, A.J., F.P. Li, S. Berg, D.J. Marchetto, S. Tsai, S.C. Jacobs, and R.S. Brown. 1979. Hereditary renal-cell carcinoma associated with a chromosomal translocation. *N. Engl. J. Med.* **301:** 592–595.

Cohen D., I. Chumakov, and J. Weissenbach. 1993. A first generation physical map of the human genome. *Nature* **366:** 698–701.

Devilee, P., M. van den Broek, N. Kuipers-Dijkshoorn, R. Kolluri, P. Khan, P. Pearson, and C.J. Cornelisse. 1989. At least four different chromosomal regions are involved in loss of heterozygosity in human breast carcinoma. *Genomics* **5**: 554–560.

Drabkin, H.A., C. Bradley, I. Hart, J. Bleskan, F.P. Li, and D. Patterson. 1985. Translocation of c-myc in the hereditary renal cell carcinoma associated with a t(3;8)(p14.2;q24.13) chromosomal translocation. *Proc. Natl. Acad. Sci.* **82:** 6980–6984.

Ehlen, T. and L. Dubeau. 1990. Loss of heterozygosity on chromosomal segments 3p, 6q and 11p in human ovarian carcinomas. *Oncogene* **5**: 219–223.

Gemmill, R.M., I. Chumakov, P. Scott, B. Waggoner, P. Rigault, Q, Chen, J. Weissenbach, K. Gardiner, H. Wang, Y. Pekarsky, I. Le Gall, D. Le Paslier, S. Guillou, E. Li, L. Robinson, L. Hahner, S. Todd, D. Cohen, and H.A. Drabkin. 1995. A second-generation YAC contig map of human chromosome 3. *Nature* **377**: 299–319.

Gyapay, G. J. Morissette, A. Vignal, C. Dib, C. Fizames, P. Millasseau, S. Marc, G. Bernardi, M. Lathorp, and J. Weissenbach. 1994. The 1993-94 Généthon human genetic linkage map. *Nature Genet.* **7:** 246–339.

Hibi, K., T. Takahashi, Y. Sekido, R. Ueda, T. Hida, Y. Ariyoshi, H. Takagi, and T. Takahashi. 1991. Coexpression of the stem cell factor and the c-kit genes in small-cell lung cancer. *Oncogene* **6**: 2291–2296.

Hibi, K., T. Takahashi, K. Yamakawa, R. Ueda, Y. Sekido, Y. Ariyoshi, M. Suyama, H. Takagi, Y. Nakamura, and T. Takahashi. 1992. Three distinct regions involved in 3p deletion in human lung cancer. *Oncogene* **7:** 445–449.

Hudson, T.J., M. Engelstein, M.K. Lee, E.C. Ho, M.J. Rubenfield, C.P. Adams, D.E. Housman, and N.C. Dracopoli. 1992. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. *Genomics* **13**: 622–629.

Johnson, B.E., A.Y. Sakaguchi, A.F. Gazdar, J.D. Minna, D. Burch, A. Marshall, S.L. Naylor. 1988. Restriction fragment length polymorphism studies show consistent loss of chromosome 3p alleles in small cell lung cancer patients' tumors. *J. Clin. Invest.* **82**: 502–507.

Jones, M.H., S. Koi, I. Fujimoto, K. Hasumi, K. Kato, and Y. Nakamura. 1994. Allelotype of uterine cancer by analysis of RFLP and microsatellite polymorphisms: Frequent loss of heterozygosity on chromosome arms 3p, 9q, 10q and 17p. *Genes Chromosomes Cancer* **9**: 119–123.

Klingelhutz, A.J., S.-Q. Wu, J. Huang, and C.A. Reznikoff. 1992. Loss of 3p13-p21.2 in tumorigenic reversion of a hybrid between isogeneic nontumorigenic and tumorigenic human uroepithelial cells. *Cancer Res.* **52:** 1631–1634.

Kohno T., H. Takayama, M. Hamaguchi, H. Takano, N. Yamaguchi, H. Tsuda, S. Hirohashi, H. Vissing, M. Shimizu, M. Oshimura, and J. Yokota. 1993. Deletion mapping of chromosome 3p in human uterine cervical cancer. *Oncogene* **8:** 1825–1832.

Kok, K., J. Osinga, B. Carritt, M.B. Davis, A.K. van der Hout, A.Y. van der Veen, R.M. Landsvater, L.F.M.H. de Leji, H.H. Berendsen, P.E. Postmus, S. Poppema, and C.H.C.M. Buys. 1987. Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. *Nature* **330**: 578–581.

Kovacs, G., P. Brusa, and W. de Riese. 1989. Tissue specific expression of a constitutional 3;6 translocation: Development of multiple bilateral renal cell carcinomas. *Int. J. Cancer* **43**: 422–427.

Latif, F., M. Fivash, G. Glenn, K. Tory, M. Orcutt, K. Hampsch, J. Delisio, M. Lerman, J. Cowan, M. Beckett, and R. Weichselbaum. 1992. Chromosome 3p deletions in head and neck carcinomas: Statistical ascertainment of allelic loss. *Cancer Res.* **52**: 1451–1456.

Lengauer, C., E.D. Green, and T. Cremer. 1992. Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. *Genomics* **13**: 826–828.

Lothe, R., S. Fossa, A. Stenwig, Y. Nakamura, R. White, A. Borresen, and A. Brogger. 1989. Loss of 3p or 11p alleles is associated with testicular cancer tumors. *Genomics* **5**: 134–138.

Markkanen, A., T. Ruutu, V. Ras, K. Frassila, S. Knutila, and A. de la Chapelle. 1987. Constitutional translocation t(3;6)(3p14.3;p11) in a family with hematologic malignancies. *Cancer Genet. Cytogenet.* **25:** 87–95.

Michaelis S., W. Bardenheuer, A. Lux, A. Schramm, A. Gockel, R. Siebert, C. Willers, K. Schmidtke, B. Todt,

A.H. van der Hout, H.C.M.C. Buys, A. Heppell-Parton, P. Rabbitts, D.I. Smith, D. LePaslier, D. Cohen, B. Opalka, and J. Schütte. 1995. Characterization and chromosomal assignment of yeast artificial chromosomes containing human 3p13-p21-specific sequence tagged sites. *Cancer Genet. Cytogenet.* **81**: 1–12.

Mori, N., J. Yokota, and M. Oshimura. 1989. Concordant deletions of chromosome 3p and loss of heterozygosity for chromosomes 13 and 17 in small cell lung carcinoma. *Cancer Res.* **49:** 5130–5135.

Morita, R., J. Ishikawa, M. Tutsumi, K. Hikiji, Y. Tsukada, S. Kamidono, S. Maeda, and Y. Nakamura. 1991. Allelotype of renal cell carcinoma. *Cancer Res.* **51:** 820–823.

Naylor, S., B. Johnson, J. Minna, and A. Sakaguchi. 1987. Loss of heterozygosity of chromosome 3 markers in small-cell lung cancer. *Nature* **329**: 451–454.

Rabbitts P., J. Douglas, M. Daly, V. Sundaresan, B. Fox, P. Haselton, F. Wells, D. Albertson, J. Waters, and J. Bergh. 1989. Frequency and extent of allelic loss of the short arm of chromosome 3 in nonsmall-cell lung cancer. *Genes Chromosomes Cancer* 1: 95–105.

Riley, J., R. Butler, D. Ogilvie, R. Finniear, D. Jenner, S. Powell, R. Anand, J.C. Smith, and A.F. Markham. 1990. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YACs) clones. *Nucleic Acids Res.* **18**: 2887–2890.

Sanchez, Y., A. El-Naggar, S. Pathak, and A.M.N. Killary. 1994. A tumor suppressor locus within 3p14-p12 mediates rapid cell death of renal cell carcinoma in vivo. *Proc. Natl. Acad. Sci.* **91:** 3383–3387.

Sato, T., F. Akiyama, G. Sakamoto, F. Kasumi, and Y. Nakamura. 1991. Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* **51**: 5794–5799.

Smith, S.E., A. Joseph, S. Nadeau, V. Shridhar, R. Gemmill, H. Drabkin, S. Knuutila, and D.I. Smith. 1993. Cloning and characterization of the human t(3;6)(p14;p11) translocation breakpoint associated with hematologic malignancies. *Cancer Genet. Cytogenet.* **71:** 15–21.

Trent, J., F. Thompson, and R. Buick. 1985. Generation of clonal variants in a human ovarian carcinoma studied by chromosome banding analysis. *Cancer Genet. Cytogenet.* **14**: 153–161.

van den Berg, A., A.Y. van der Veen, M.M.F. Hulsbeek, G. Kovacs, R.M. Gemmill, H.A. Drabkin, and C.H.C.M. Buys. 1995. Defining the position of the breakpoint of the constitutional t(3;6) occurring in a family with renal cell carcinoma. *Genes Chromosomes Cancer* **12**: 224–228.

Wang, N. and K.L. Perkins. 1984. Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. *Cancer Genet. Cytogenet.* **11:** 479–481.

Weissenbach, J., G. Gyapay, C. Dib, A. Vignal, J. Morissette, P. Millasseau, G. Vaysseix, and M. Lathrop. 1992. A second-generation linkage map of the human genome. *Nature* **359**: 794–801.

Weston, A., J. Willey, R. Modali, H. Sugimura, E. McDowell, J. Resau, B. Light, A. Haugen, D. Mann, B. Trump, and C. Harris. 1989. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the lung. *Proc. Natl. Acad. Sci.* **86**: 5099–5103.

Whang-Peng, J., T. Knutsen, E. Douglass, E. Chu, R. Ozols, W. Hogan, and R. Young. 1984. Cytogenetic studies in ovarian cancer. *Cancer Genet. Cytogenet.* **11**: 91–106.

Wilhelm, M., P. Bugert, C. Kenk, G. Staehler, and G. Kovacs. 1995. Terminal deletion of chromosome 3p sequences in nonpaillary renal cell carcinomas: A breakpiont cluster between loci *D3S1285* and *D3S1603*. *Cancer Res.* **55**: 5383–5385.

Yokoyama, S., K. Yamakawa, E. Tsuchiya, M. Murata, S. Sekiyama, and Y. Nakamura. 1992. Deletion mapping on the short arm of chromosome 3 in squamous cell carcinoma and adenocarcinoma of the lung. *Cancer Res.* **52:** 873–877.

Yokota, J., M. Wada, Y. Shimosato, M. Terada, and T. Sugimura. 1987. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma in the lung. *Proc. Natl. Acad. Sci* **84**: 9252–9256.

Yokota J., Y. Tsukada, T. Nakajima, M. Gotoh, Y. Shimosato, N. Mori, Y. Tsunokawa, T. Sugimura, and M. Terada. 1989. Loss of heterozygosity on the short arm of chromosome 3 in carcinoma of the uterine cervix. *Cancer Res.* **48**: 2858–2866.

Zbar, B., H. Brauch, C. Talmadge, and M. Linehan. 1987. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. *Nature* **327**: 721–724.

Received July 31, 1995; accepted in revised form February 15, 1996.

Construction of a consistent YAC contig for human chromosome region 3p14.1.

W Bardenheuer, S Michaelis, A Lux, et al.

Genome Res. 1996 6: 176-186 Access the most recent version at doi:10.1101/gr.6.3.176

References	This article cites 46 articles, 13 of which can be accessed free at: http://genome.cshlp.org/content/6/3/176.full.html#ref-list-1
License	
Email Alerting Service	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here .

To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions