91 research outputs found

    Bistability in sine-Gordon: the ideal switch

    Full text link
    The sine-Gordon equation, used as the representative nonlinear wave equation, presents a bistable behavior resulting from nonlinearity and generating hysteresis properties. We show that the process can be understood in a comprehensive analytical formulation and that it is a generic property of nonlinear systems possessing a natural band gap. The approach allows to discover that sine-Gordon can work as an it ideal switch by reaching a transmissive regime with vanishing driving amplitude.Comment: Phys. Rev. E, (to be published, May 2005

    Cathode insert design for SC RF guns

    Get PDF
    The cathode inserts in superconducting SC RF guns are normal conducting devices attached to a SC RF gun cavity. They enable the photocathode replacement and, at the same time, preserve high quality factor and high fields in the RF guns. However, the insert may also limit the gun performance because of multipacting etc. The experience gathered in early designs at Wuppertal [1], and, more recently at BNL [2] and HZDR [3] is taken into account. We consider the design structure of the cathode insert worked out by BINP for 1 cell prototype of SC HZDR RF gun [4]. The detailed electric, mechanic, and thermal calculations of the initial [4] and the upgraded design are presented in this paper

    A surprising method for polarising antiprotons

    Full text link
    We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to v/c0.002v/c \approx 0.002 the cross section for spin-flip is as large as about 210132 \cdot 10^{13} barn as shown by new QED-calculations of the triple spin-cross sections. Two possibilities for providing a positron source with sufficient flux density are presented. A polarised positron beam with a polarisation of 0.70 and a flux density of approximately 1.510101.5 \cdot 10^{10}/(mm2^2 s) appears to be feasible by means of a radioactive 11^{11}C dc-source. A more involved proposal is the production of polarised positrons by pair production with circularly polarised photons. It yields a polarisation of 0.76 and requires the injection into a small storage ring. Such polariser sources can be used at low (100 MeV) as well as at high (1 GeV) energy storage rings providing a time of about one hour for polarisation build-up of about 101010^{10} antiprotons to a polarisation of about 0.18. A comparison with other proposals show a gain in the figure-of-merit by a factor of about ten.Comment: 13 pages, 8 figures; v2: minor language and signification corrections v3: (14 pages, 12 figures) major error, nonapplicable polarisation transfer cross sections replaced by the mandatory spin-flip cross section

    CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population

    Get PDF
    Background. Tacrolimus forms the cornerstone for immunosuppression in solid-organ transplantation. It has a narrow therapeutic window with wide inter- and intra-patient variability (IPV). Cytochrome P-450 3A5 (CYP3A5) is the main enzyme involved in tacrolimus metabolism, and rs776746A>G is the most frequently studied polymorphism in the CYP3A5 gene. The rs776746A>G (i.e. CYP3A5*3) single-nucleotide polymorphism in CYP3A5 alters tacrolimus predose trough concentration (C0) and may also affect IPV, which may lead to immune- and/or drug-mediated allograft injury. CYP3A5*3 may result in absent (*3/*3), partial (*1/*3) or normal (*1/*1) CYP3A5 expression. The effect of CYP3A5*3 on tacrolimus exposure and variability has not been examined in South African (SA) transplant recipients.Objectives. To determine the frequencies and effect of CYP3A5 and adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1) polymorphisms on tacrolimus C0/dose ratios in different ethnic groups attending a tertiary renal transplant clinic in SA, and other factors that may explain inter- and IPV in tacrolimus C0.Methods. All consenting stable renal transplant recipients on tacrolimus at the Livingstone Hospital Renal Unit in Port Elizabeth, SA, were included. Tacrolimus concentrations were obtained using a microparticle enzyme immunoassay method (ARCHITECT analyser, Abbott Laboratories). Polymerase chain reaction/restriction fragment length polymorphism was used to genotype for CYP3A5*3 and *6 allelic variants.Results. There were 43 participants (35% black African, 44% mixed ancestry and 21% white), with a mean age of 44.5 years, median duration post-transplant of 47 months and median (interquartile range) creatinine and estimated glomerular filtration rate levels of 118 (92 - 140) µmol/L and 62 (49 - 76) mL/min at study inclusion. The mean tacrolimus C0 in the study was 6.7 ng/mL, with no difference across the different ethnic groups. However, the mean total daily dose of tacrolimus required was 9.1 mg (0.12 mg/kg), 7.2 mg (0.09 mg/kg) and 4.3 mg (0.06 mg/kg) in black, mixed-ancestry and white patients, respectively (p=0.017). The frequencies for CYP3A5 expressors (i.e. CYP3A5*1/*1 + CYP3A5*1/*3 genotypes) were 72%, 100%, 76% and 12% for all patients combined and black, mixed-ancestry and white patients, respectively. The frequencies for CYP3A5 non-expressors (i.e. CYP3A5*3/*3 genotypes) were 0%, 24% and 88% among the black, mixed-ancestry and white patients, respectively. None of the patients carried the CYP3A5*6 allele. CYP3A5*1/*1 and CYP3A5*1/*3 genotype carriers required a two-fold increase in dose compared with the non-expressor genotype carriers, CYP3A5*3/*3 (p<0.05). CYP3A5*3/*3 carriers also demonstrated higher IPV than CYP3A5*1/*1 and *1/*3 carriers (18.1% v. 14.2%; p=0.125).Conclusions. Compared with global transplant populations, SA renal transplant recipients demonstrated a very high rate of CYP3A5 expression, with a significant impact on tacrolimus pharmacokinetics. Genetic variation in CYP3A5 expression affects tacrolimus dosing requirements, and knowing the CYP3A5 genotype of transplant patients may allow better dose prediction compared with current standard dosing recommendations in a multi-ethnic population. Overall, black African patients required higher doses of tacrolimus than their white counterparts. While further prospective studies are needed to better evaluate dosing algorithms, it would appear that the starting dose of tacrolimus should be higher in black and mixed-race patients.

    Dark Current in Superconducting RF Photoinjectors Measurements and Mitigation

    Get PDF
    Unwanted beam can cause beam losses and may produce acute or chronic damages of the accelerator. Furthermore it can considerably disturb experiments or increase its back ground. The operation of the superconducting RF photo gun at the ELBE accelerator has delivered the first experimental information on that topic. It was found, that dark current is an important issue, similar to that normal conducting RF photo injectors. In the presentation the measurement of dark current, its properties and analysis will be shown and we will discuss ways for mitigation, especially the construction of a dark current kicke

    Rapidly progressive post-transplant lymphoproliferative disease following withdrawal of sirolimus

    Get PDF
    Sirolimus, a potent inhibitor of B- and T-cell activation, is a commonly used immunosuppressant after renal transplantation. Withdrawal of sirolimus from the immunosuppression regimen may reduce B-cell surveillance. We present a case of rapidly progressive central nervous system (CNS) polymorphic Epstein-Barr virus (EBV)-related post-transplant lymphoproliferative disorder following the withdrawal of sirolimus

    Field Emission Studies of Heat Treated Mo Substrates

    Get PDF
    Molybdenum can be used as a substrate for the bi alkali antimonide photocathodes utilized for the generation of high brightness electron beams in a superconducting radio frequency SRF photoinjector cavities. Operation at high field strength is required to obtain a low emittance beam, thus increasing the probability of field emission FE from the cathode surface. Usually, substrates are heated in situ before alkali de position to remove oxide layers from the surface. FE on Mo substrates was measured by means of a field emission scanning microscope FESM . It turned out that in situ heat treatment HT of the Mo surface significantly changes the FE behaviour by activation of new emitters. For a better understanding of the mechanism for enhanced emission after in situ heating a witness Mo sample was investigated using x ray photoelectron spectroscop

    Introducing GUNLAB a compact test facility for SRF photoinjectors

    Get PDF
    Superconducting radio frequency photoelectron injectors SRF photoinjectors are promising electron sources for high brightness accelerators with high average current and short pulse duration like FELs and ERLs. For the upcoming ERL project bERLinPro we want to test and commission different SRF photoinjectors, optimize the beam performance and examine photocathode materials in an independent test facility. Therefore we designed GunLab to characterize beam parameters from the SRF photoinjectors in a compact diagnostics beamline. The main challenge of GunLab is to characterize the full six dimensional phase space as a function of drive laser and RF parameters. Here we present design and estimated performance of GunLa

    Results from Beam Commissioning of an SRF Plug Gun Cavity Photoinjector

    Get PDF
    Superconducting rf photo electron injectors SRF photoinjectors hold the promise to deliver high brightness, high average current electron beams for future light sources or other applications demanding continuous wave operation of an electron injector. This paper discusses results from beam commissioning of a hybrid SRF photoinjector based on a Pb coated plug and a Nb rf gun cavity for beam energies up to 2.5MeV at Helmholtz Zentrum Berlin HZB . Emittance measurements and transverse phase space characterization with solenoid scan and slitmask methods will be presente

    RESULTS FROM BEAM COMMISSIONG OF AN SRF PLUG-GUN CAVITY PHOTOINJECTOR

    Get PDF
    Abstract Superconducting rf photo-electron injectors (SRF photoinjectors) hold the promise to deliver high brightness, high average current electron beams for future light sources or other applications demanding continuous wave operation of an electron injector. This paper discusses results from beam commissioning of a hybrid SRF photoinjector based on a Pb coated plug and a Nb rf gun cavity for beam energies up to 2.5 MeV at Helmholtz-Zentrum Berlin (HZB). Emittance measurements and transverse phase space characterization with solenoid-scan and slitmask methods will be presented. MOTIVATIO
    corecore