331 research outputs found

    Feedback control of the fluorescence light squeezing

    Full text link
    We consider a two-level atom stimulated by a coherent monochromatic laser and we study how to enhance the squeezing of the fluorescence light and of the atom itself in the presence of a Wiseman-Milburn feedback mechanism, based on the homodyne detection of a fraction of the emitted light. Besides analyzing the effect of the control parameters on the squeezing properties of the light and of the atom, we also discuss the relations among these. The problem is tackled inside the framework of quantum trajectory theory.Comment: RevTeX4, 4 pages, 2 figure

    Measurements continuous in time and a posteriori states in quantum

    Full text link
    Measurements continuous in time were consistently introduced in quantum mechanics and applications worked out, mainly in quantum optics. In this context a quantum filtering theory has been developed giving the reduced state after the measurement when a certain trajectory of the measured observables is registered (the a posteriori states). In this paper a new derivation of filtering equations is presented, in the cases of counting processes and of measurement processes of diffusive type. It is also shown that the equation for the a posteriori dynamics in the diffusive case can be obtained, by a suitable limit, from that one in the counting case. Moreover, the paper is intended to clarify the meaning of the various concepts involved and to discuss the connections among them. As an illustration of the theory, simple models are worked out.Comment: 31 page. See also related papers at http://www.maths.nott.ac.uk/personal/vpb/research/mes_fou.html and http://www.maths.nott.ac.uk/personal/vpb/research/fil_con.htm

    Quantum trajectories, feedback and squeezing

    Full text link
    Quantum trajectory theory is the best mathematical set up to model continual observations of a quantum system and feedback based on the observed output. Inside this framework, we study how to enhance the squeezing of the fluorescence light emitted by a two-level atom, stimulated by a coherent monochromatic laser. In the presence of a Wiseman-Milburn feedback scheme, based on the homodyne detection of a fraction of the emitted light, we analyze the squeezing dependence on the various control parameters.Comment: 8 pages, 2 figures, "Noise Information & Complexity @ Quantum Scale" Proceeding

    Quantum stochastic models of two-level atoms and electromagnetic cross sections

    Get PDF
    Quantum stochastic differential equations have been used to describe the dynamics of an atom interacting with the electromagnetic field via absorption/emission processes. Here, by using the full quantum stochastic Schroedinger equation proposed by Hudson and Parthasarathy fifteen years ago, we show that such models can be generalized to include other processes into the interaction. In the case of a two-level atom we construct a model in which the interaction with the field is due either to absorption/emission processes either to direct scattering processes, which simulate the interaction due to virtual transitions to the levels which have been eliminated from the description. To see the effects of the new terms, the total, elastic and inelastic eloctromagnetic cross sections are studied. The new power spectrum is compared with Mollow's results

    Instruments and channels in quantum information theory

    Full text link
    While a positive operator valued measure gives the probabilities in a quantum measurement, an instrument gives both the probabilities and the a posteriori states. By interpreting the instrument as a quantum channel and by using the typical inequalities for the quantum and classical relative entropies, many bounds on the classical information extracted in a quantum measurement, of the type of Holevo's bound, are obtained in a unified manner.Comment: 12 pages, revtex

    The Dual Description of Long Distance QCD and the Effective Lagrangian for Constituent Quarks

    Get PDF
    We describe long distance QCD by a dual theory in which the fundamental variables are dual potentials coupled to monopole fields and use this dual theory to determine the effective Lagrangian for constituent quarks. We find the color field distribution surrounding a quark anti-quark pair to first order in their velocities. Using these distributions we eliminate the dual potentials and obtain an effective interaction Lagrangian LI(x1,x2;v1,v2)L_I ( \vec x_1 \, , \vec x_2 \, ; \vec v_1 \, , \vec v_2 ) depending only upon the quark and anti-quark coordinates and velocities, valid to second order in their velocities. We propose LI L_I as the Lagrangian describing the long distance interaction of constituent quarks

    Linear stochastic wave-equations for continuously measured quantum systems

    Full text link
    While the linearity of the Schr\"odinger equation and the superposition principle are fundamental to quantum mechanics, so are the backaction of measurements and the resulting nonlinearity. It is remarkable, therefore, that the wave-equation of systems in continuous interaction with some reservoir, which may be a measuring device, can be cast into a linear form, even after the degrees of freedom of the reservoir have been eliminated. The superposition principle still holds for the stochastic wave-function of the observed system, and exact analytical solutions are possible in sufficiently simple cases. We discuss here the coupling to Markovian reservoirs appropriate for homodyne, heterodyne, and photon counting measurements. For these we present a derivation of the linear stochastic wave-equation from first principles and analyze its physical content.Comment: 34 pages, Revte

    Jump-diffusion unravelling of a non Markovian generalized Lindblad master equation

    Full text link
    The "correlated-projection technique" has been successfully applied to derive a large class of highly non Markovian dynamics, the so called non Markovian generalized Lindblad type equations or Lindblad rate equations. In this article, general unravellings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unravelling can be interpreted in terms of measurements continuous in time, but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and we discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.Comment: 23 page

    Nurses and the acceptance of innovations in technology-intensive contexts: the need for tailored management strategies

    Get PDF
    BACKGROUND: Several technological innovations have been introduced in healthcare over the years, and their implementation proved crucial in addressing challenges of modern health. Healthcare workers have frequently been called upon to become familiar with technological innovations that pervade every aspect of their profession, changing their working schedule, habits, and daily actions. PURPOSE: An in-depth analysis of the paths towards the acceptance and use of technology may facilitate the crafting and adoption of specific personnel policies taking into consideration definite levers, which appear to be different in relation to the age of nurses. APPROACH: The strength of this study is the application of UTAUT model to analyse the acceptance of innovations by nurses in technology-intensive healthcare contexts. Multidimensional Item Response Theory is applied to identify the main dimensions characterizing the UTAUT model. Paths are tested through two stage regression models and validated using a SEM covariance analysis. RESULTS: The age is a moderator for the social influence: social influence, or peer opinion, matters more for young nurse. CONCLUSION: The use of MIRT to identify the most important items for each construct of UTAUT model and an in-depth path analysis helps to identify which factors should be considered a leverage to foster nurses' acceptance and intention to use new technologies (o technology-intensive devices). PRACTICAL IMPLICATIONS: Young nurses may benefit from the structuring of shifts with the most passionate colleagues (thus exploiting the social influence), the participation in ad hoc training courses (thus exploiting the facilitating conditions), while other nurses could benefit from policies that rely on the stressing of the perception of their expectations or the downsizing of their expectancy of the effort in using new technologies

    Weak Values, Quantum Trajectories, and the Stony-Brook Cavity QED experiment

    Full text link
    Weak values as introduced by Aharonov, Albert and Vaidman (AAV) are ensemble average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. I show that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). I use quantum trajectory theory to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (non-projective) final measurement, and (d) a non-back-action-evading weak measurement. I apply this theory to the recent Stony-Brook cavity QED experiment demonstrating wave-particle duality [G.T. Foster, L.A. Orozco, H.M. Castro-Beltran, and H.J. Carmichael, Phys. Rev. Lett. {85}, 3149 (2000)]. I show that the ``fractional'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.Comment: 6 pages, no figures. To be published in Phys. Rev.
    corecore