138 research outputs found

    Overview of farmers expected benefits of diversification. Report on national stakeholder involvement.

    Get PDF
    Seven different European countries are participating in a transnational project SUREVEG (Strip-cropping and recycling of waste for biodiverse and resoURce-Efficient intensive VEGetable production). SUREVEG focuses on developing and implementing new diversified, intensive organic cropping systems using strip-cropping and fertility strategies from plant-based fertilizers for improved resilience, system sustainability, local nutrient recycling and soil carbon storage. This study focuses on providing references concerning benefits and drawbacks of strip-cropping and plant residues for soil fertility in field vegetable production at medium sized organic farms. Specifically to identify local stakeholders’ knowledge and develop ideas in an iterative approach on benefits of diversification in space, time and genes, and plant-based fertilizers. Activities included workshops with stakeholder involvement, to increase awareness and dialogue on strip-cropping and identify local technical and practical knowledge on organic systems. A survey was developed as a tool for having a more systematic discussion with the stakeholders in the workshops. With a selection of questions to analysis the performance criteria of strip-cropping in farmers perspective a transnational comparison of the findings is presented,. The workshops and surveys were executed in six different European countries. In total approximately 140 farmers and other stakeholders were participating in the workshops and 38 farmers filled out the survey. The outcome of the survey and workshops in the different countries suggests that most farmers think fairly equally about the added values of strip-cropping. Higher resistance of crops against plagues and diseases is ranked high in all countries. This is followed by soil quality and benefits from increased agroecosystem biodiversity. Only Belgian farmers mentioned higher yield as an important added value, however certain individual farmers in different counties have ranked it high as well. Divers answers were given on the question on the most suitable width of the cropping-strips. For farmers this depends mostly on the machinery farmers have available for their daily practices. For the importance of crop traits, the efficient use of nutrients and resilience against diseases and plagues scored high throughout all countries investigated. Only Italian farmers mentioned nitrogen-fixing capacity as an important trait. The farmers in all countries thought the same about expected bottlenecks for implementing strip-cropping system: harvesting, weed control and technical problems. The information obtained by the survey and workshops in the different countries is input for the experimental design of field trials in each country. Some countries changed their set-up for following years. To conclude, in the participating countries, the use of strip-cropping is still limited. The farmers participating, consider strip-cropping a promising innovation. However, a lot of basic questions about strip-cropping still need to be answered for farmers before implementing strip-cropping. Farmers in every country will benefit from a database of best crops combinations. In Finland, the farmers explicitly mentioned the need of good companion crops for Brassicaceae and Apiaceae vegetables (suitable trap crops)

    A roadmap for the Human Developmental Cell Atlas

    Get PDF
    The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development

    Robótica agrícola: proyecto Sureveg sobre agricultura ecológica en cultivos en franjas

    Get PDF
    The Sureveg project is a international consortium funded by CORE Organic Cofund devoted to foster biodiversity (above and below ground) by using new agricultural practices related to crop association in a strip-crop scheme, and applitying digital technologies (robotics, sensorics)for a organic sustainable production

    Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity

    Get PDF
    Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection

    The discovAIR project:a roadmap towards the Human Lung Cell Atlas

    Get PDF
    The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The lung biological network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and the cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework program. DiscovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions

    Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions

    Get PDF
    International audienceBACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas

    miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1

    Get PDF
    As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al
    corecore