4,030 research outputs found

    The geometry of the Barbour-Bertotti theories I. The reduction process

    Get PDF
    The dynamics of N3N\geq 3 interacting particles is investigated in the non-relativistic context of the Barbour-Bertotti theories. The reduction process on this constrained system yields a Lagrangian in the form of a Riemannian line element. The involved metric, degenerate in the flat configuration space, is the first fundamental form of the space of orbits of translations and rotations (the Leibniz group). The Riemann tensor and the scalar curvature are computed by a generalized Gauss formula in terms of the vorticity tensors of generators of the rotations. The curvature scalar is further given in terms of the principal moments of inertia of the system. Line configurations are singular for N3N\neq 3. A comparison with similar methods in molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit

    The geometry of the Barbour-Bertotti theories II. The three body problem

    Get PDF
    We present a geometric approach to the three-body problem in the non-relativistic context of the Barbour-Bertotti theories. The Riemannian metric characterizing the dynamics is analyzed in detail in terms of the relative separations. Consequences of a conformal symmetry are exploited and the sectional curvatures of geometrically preferred surfaces are computed. The geodesic motions are integrated. Line configurations, which lead to curvature singularities for N3N\neq 3, are investigated. None of the independent scalars formed from the metric and curvature tensor diverges there.Comment: 16 pages, 2 eps figures, to appear in Classical and Quantum Gravit

    Leptons, quarks, and their antiparticles from a phase-space perspective

    Full text link
    It is argued that antiparticles may be interpreted in macroscopic terms without explicitly using the concept of time and its reversal. The appropriate framework is that of nonrelativistic phase space. It is recalled that a quantum version of this approach leads also, alongside the appearance of antiparticles, to the emergence of `internal' quantum numbers identifiable with weak isospin, weak hypercharge and colour, and to the derivation of the Gell-Mann-Nishijima relation, while simultaneously offering a preonless interpretation of the Harari-Shupe rishon model. Furthermore, it is shown that - under the assumption of the additivity of canonical momenta - the approach entails the emergence of string-like structures resembling mesons and baryons, thus providing a different starting point for the discussion of quark unobservability.Comment: Talk given at Fifth Int. Workshop DICE2010 Space-Time-Matter, Castiglioncello, Italy, September 13-17, 201

    Scale-invariant gravity: Spacetime recovered

    Full text link
    The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Recently a manifestly 3-dimensional theory was constructed with conformal superspace as the configuration space. Here a fully 4-dimensional action is constructed so as to be invariant under conformal transformations of the 4-metric using general relativity as a guide. This action is then decomposed to a (3+1)-dimensional form and from this to its Jacobi form. The surprising thing is that the new theory turns out to be precisely the original 3-dimensional theory. The physical data is identified and used to find the physical representation of the theory. In this representation the theory is extremely similar to general relativity. The clarity of the 4-dimensional picture should prove very useful for comparing the theory with those aspects of general relativity which are usually treated in the 4-dimensional framework.Comment: Replaced with final version: minor changes to tex

    Sickness certification system in the United Kingdom: qualitative study of views of general practitioners in Scotland

    Get PDF
    Objectives: To explore how general practitioners operate the sickness certification system, their views on the system, and suggestions for change. Design: Qualitative focus group study consisting of 11 focus groups with 67 participants. Setting: General practitioners in practices in Glasgow, Tayside, and Highland regions, Scotland. Sample: Purposive sample of general practitioners, with further theoretical sampling of key informant general practitioners to examine emerging themes. Results: General practitioners believed that the sickness certification system failed to address complex, chronic, or doubtful cases. They seemed to develop various operational strategies for its implementation. There appeared to be important deliberate misuse of the system by general practitioners, possibly related to conflicts about roles and incongruities in the system. The doctor-patient relationship was perceived to conflict with the current role of general practitioners in sickness certification. When making decisions about certification, the general practitioners considered a wide variety of factors. They experienced contradictory demands from other system stakeholders and felt blamed for failing to make impossible reconciliations. They clearly identified the difficulties of operating the system when there was no continuity of patient care. Many wished either to relinquish their gatekeeper role or to continue only with major changes. Conclusions: Policy makers need to recognise and accommodate the range and complexity of factors that influence the behaviour of general practitioners operating as gatekeepers to the sickness certification system, before making changes. Such changes are otherwise unlikely to result in improvement. Models other than the primary care gatekeeper model should be considered

    ATP allosterically activates the human 5-lipoxygenase molecular mechanism of arachidonic acid and 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid.

    Get PDF
    5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation and epoxidation indicate that a specific step in its molecular mechanism is changed, possibly because of a lowering of the dependence of the rate-limiting step on hydrogen atom abstraction and an increase in the dependency on hydrogen bond rearrangement. Therefore, changes in ATP concentration in the cell could affect the production of 5-LOX products, such as leukotrienes and lipoxins, and thus have wide implications for the regulation of cellular inflammation

    Hydrographic data from R/V endeavor cruise #90

    Get PDF
    The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W

    Scale-Invariant Gravity: Geometrodynamics

    Get PDF
    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t scaling developed in the parallel particle dynamics paper by one of the authors. In spatially-compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different.Comment: 33 pages. Published version (has very minor style changes due to changes in companion paper

    Quenched QCD at finite density

    Full text link
    Simulations of quenched QCDQCD at relatively small but {\it nonzero} chemical potential μ\mu on 32×16332 \times 16^3 lattices indicate that the nucleon screening mass decreases linearly as μ\mu increases predicting a critical chemical potential of one third the nucleon mass, mN/3m_N/3, by extrapolation. The meson spectrum does not change as μ\mu increases over the same range, from zero to mπ/2m_\pi/2. Past studies of quenched lattice QCD have suggested that there is phase transition at μ=mπ/2\mu = m_\pi/2. We provide alternative explanations for these results, and find a number of technical reasons why standard lattice simulation techniques suffer from greatly enhanced fluctuations and finite size effects for μ\mu ranging from mπ/2m_\pi/2 to mN/3m_N/3. We find evidence for such problems in our simulations, and suggest that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte
    corecore