338 research outputs found
BodyNet: Volumetric Inference of 3D Human Body Shapes
Human shape estimation is an important task for video editing, animation and
fashion industry. Predicting 3D human body shape from natural images, however,
is highly challenging due to factors such as variation in human bodies,
clothing and viewpoint. Prior methods addressing this problem typically attempt
to fit parametric body models with certain priors on pose and shape. In this
work we argue for an alternative representation and propose BodyNet, a neural
network for direct inference of volumetric body shape from a single image.
BodyNet is an end-to-end trainable network that benefits from (i) a volumetric
3D loss, (ii) a multi-view re-projection loss, and (iii) intermediate
supervision of 2D pose, 2D body part segmentation, and 3D pose. Each of them
results in performance improvement as demonstrated by our experiments. To
evaluate the method, we fit the SMPL model to our network output and show
state-of-the-art results on the SURREAL and Unite the People datasets,
outperforming recent approaches. Besides achieving state-of-the-art
performance, our method also enables volumetric body-part segmentation.Comment: Appears in: European Conference on Computer Vision 2018 (ECCV 2018).
27 page
- …