9 research outputs found

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular alterations occur frequently in T-ALL and the potential impact of those abnormalities on outcome is still controversial. The current study aimed to test whether <it>NOTCH1 </it>mutations and additional molecular abnormalities would impact T-ALL outcome in a series of 138 T-ALL paediatric cases.</p> <p>Methods</p> <p>T-ALL subtypes, status of <it>SIL-TAL1 </it>fusion, ectopic expression of <it>TLX3</it>, and mutations in <it>FBXW7</it>, <it>KRAS</it>, <it>PTEN </it>and <it>NOTCH1 </it>were assessed as overall survival (OS) and event-free survival (EFS) prognostic factors. OS and EFS were determined using the Kaplan-Meier method and compared using the log-rank test.</p> <p>Results</p> <p>The frequencies of mutations were 43.5% for <it>NOTCH1</it>, while <it>FBXW7</it>, <it>KRAS </it>and <it>PTEN </it>exhibited frequencies of 19.1%, 9.5% and 9.4%, respectively. In 78.3% of cases, the coexistence of <it>NOTCH1 </it>mutations and other molecular alterations was observed. In multivariate analysis no statistical association was revealed between <it>NOTCH1 </it>mutations and any other variable analyzed. The mean length of the follow-up was 68.4 months and the OS was 50.7%. <it>SIL-TAL1 </it>was identified as an adverse prognostic factor. <it>NOTCH1 </it>mutation status was not associated with outcome, while the presence of <it>NOTCH1 </it>complex mutations (indels) were associated with a longer overall survival (<it>p </it>= 0.031) than point mutations.</p> <p>Conclusion</p> <p><it>NOTCH1 </it>mutations alone or in combination with <it>FBXW7 </it>did not impact T-ALL prognosis. Nevertheless, complex <it>NOTCH1 </it>mutations appear to have a positive impact on OS and the <it>SIL-TAL1 </it>fusion was validated as a negative prognostic marker in our series of T-ALL.</p

    COBL is a novel hotspot for IKZF1 deletions in childhood acute lymphoblastic leukemia

    No full text
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Because of its clinical importance, we previously mapped breakpoints of intragenic deletions and developed a multiplex PCR assay to detect recurrent intragenic ΔIKZF1. Since the multiplex PCR was not able to detect complete deletions (IKZF1 Δ1-8), which account for ~30% of all ΔIKZF1, we aimed at investigating the genomic scenery of IKZF1 Δ1-8. Six samples of cases with IKZF1 Δ1-8 were analyzed by microarray assay, which identified monosomy 7, isochromosome 7q, and large interstitial deletions presenting breakpoints within COBL gene. Then, we established a multiplex ligation-probe amplification (MLPA) assay and screened copy number alterations within chromosome 7 in 43 diagnostic samples with IKZF1 Δ1-8. Our results revealed that monosomy and large interstitial deletions within chromosome 7 are the main causes of IKZF1 Δ1-8. Detailed analysis using long distance inverse PCR showed that six patients (16%) had large interstitial deletions starting within intronic regions of COBL at diagnosis, which is ~611 Kb downstream of IKZF1, suggesting that COBL is a hotspot for ΔIKZF1. We also investigated a series of 25 intragenic deletions (Δ2–8, Δ3–8 or Δ4–8) and 24 relapsed samples, and found one IKZF1-COBL tail-to-tail fusion, thus supporting that COBL is a novel hotspot for ΔIKZF1. Finally, using RIC score methodology, we show that breakpoint sequences of IKZF1 Δ1-8 are not analog to RAG-recognition sites, suggesting a different mechanism of error promotion than that suggested for intragenic ΔIKZF1

    COBL is a novel hotspot for IKZF1 deletions in childhood acute lymphoblastic leukemia

    No full text
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Because of its clinical importance, we previously mapped breakpoints of intragenic deletions and developed a multiplex PCR assay to detect recurrent intragenic ΔIKZF1. Since the multiplex PCR was not able to detect complete deletions (IKZF1 Δ1-8), which account for ~30% of all ΔIKZF1, we aimed at investigating the genomic scenery of IKZF1 Δ1-8. Six samples of cases with IKZF1 Δ1-8 were analyzed by microarray assay, which identified monosomy 7, isochromosome 7q, and large interstitial deletions presenting breakpoints within COBL gene. Then, we established a multiplex ligation-probe amplification (MLPA) assay and screened copy number alterations within chromosome 7 in 43 diagnostic samples with IKZF1 Δ1-8. Our results revealed that monosomy and large interstitial deletions within chromosome 7 are the main causes of IKZF1 Δ1-8. Detailed analysis using long distance inverse PCR showed that six patients (16%) had large interstitial deletions starting within intronic regions of COBL at diagnosis, which is ~611 Kb downstream of IKZF1, suggesting that COBL is a hotspot for ΔIKZF1. We also investigated a series of 25 intragenic deletions (Δ2–8, Δ3–8 or Δ4–8) and 24 relapsed samples, and found one IKZF1-COBL tail-to-tail fusion, thus supporting that COBL is a novel hotspot for ΔIKZF1. Finally, using RIC score methodology, we show that breakpoint sequences of IKZF1 Δ1-8 are not analog to RAG-recognition sites, suggesting a different mechanism of error promotion than that suggested for intragenic ΔIKZF1
    corecore