7,678 research outputs found
Managing knowledge in organizations : a Nonaka’s SECI model operationalization
Purpose: The SECI model (Nonaka, 1994) is the best-known conceptual framework for understanding knowledge generation processes in organizations. To date, however, empirical support for this framework has been overlooked. The present study aims to provide an evidence-based groundwork for the SECI model by testing a multidimensional questionnaire Knowledge Management SECI Processes Questionnaire (KMSP-Q) designed to capture the knowledge conversion modes theorized by Nonaka.
Methodology: In a twofold study, the SECI model was operationalized via the KMSP-Q. Specifically, Study One tested its eight-dimensional structure through exploratory and confirmatory factorial analyses on 372 employees from different sectors. Study Two examined the construct validity and reliability by replicating the KMSP-Q factor structure in knowledge-intensive contexts (on a sample of 466 health-workers), and by investigating the unique impact of each dimension on some organizational outcomes (i.e., performance, innovativeness, collective efficacy).
Findings: The overall findings highlighted that the KMSP-Q is a psychometrically robust questionnaire in terms of both dimensionality and construct validity, the different knowledge generation dimensions being specifically linked to different organizational outcomes.
Research/Practical Implications: The KMSP-Q actualizes and provides empirical consistency to the theory underlying the SECI model. Moreover, it allows for the monitoring of an organization’s capability to manage new knowledge and detect the strengths/weaknesses of KM-related policies and programs.
Originality/Value: This paper proposes a comprehensive measure of knowledge generation in work contexts, highlighting processes that organizations are likely to promote in order to improve their performance through the management of their knowledge resources
Photoproduction of h_c
Using the NRQCD factorization formalism, we calculate the total cross section
for the photoproduction of h_c mesons. We include color-octet and color-singlet
mechanisms as well as next-to-leading order perturbative QCD corrections. The
theoretical prediction depends on two nonperturbative matrix elements that are
not well determined from existing data on charmonium production. For reasonable
values of these matrix elements, the cross section is large enough that the h_c
may be observable at the E831 experiment and at the HERA experiments.Comment: Revtex file 8 pages, 1 figure. Macros needed: epsf,floats,rotate
Minor typos changed, and reference added. Version to be published in
Phys.Rev.
Experimental quantum computing without entanglement
Entanglement is widely believed to lie at the heart of the advantages offered
by a quantum computer. This belief is supported by the discovery that a
noiseless (pure) state quantum computer must generate a large amount of
entanglement in order to offer any speed up over a classical computer. However,
deterministic quantum computation with one pure qubit (DQC1), which employs
noisy (mixed) states, is an efficient model that generates at most a marginal
amount of entanglement. Although this model cannot implement any arbitrary
algorithm it can efficiently solve a range of problems of significant
importance to the scientific community. Here we experimentally implement a
first-order case of a key DQC1 algorithm and explicitly characterise the
non-classical correlations generated. Our results show that while there is no
entanglement the algorithm does give rise to other non-classical correlations,
which we quantify using the quantum discord - a stronger measure of
non-classical correlations that includes entanglement as a subset. Our results
suggest that discord could replace entanglement as a necessary resource for a
quantum computational speed-up. Furthermore, DQC1 is far less resource
intensive than universal quantum computing and our implementation in a scalable
architecture highlights the model as a practical short-term goal.Comment: 5 pages, 4 figure
Two-Loop Bhabha Scattering in QED
In the context of pure QED, we obtain analytic expressions for the
contributions to the Bhabha scattering differential cross section at order
alpha^4 which originate from the interference of two-loop photonic vertices
with tree-level diagrams and from the interference of one-loop photonic
diagrams amongst themselves. The ultraviolet renormalization is carried out.
The IR-divergent soft-photon emission corrections are evaluated and added to
the virtual cross section. The cross section obtained in this manner is valid
for on-shell electrons and positrons of finite mass, and for arbitrary values
of the center of mass energy and momentum transfer. We provide the expansion of
our results in powers of the electron mass, and we compare them with the
corresponding expansion of the complete order alpha^4 photonic cross section,
recently obtained in hep-ph/0501120. As a by-product, we obtain the
contribution to the Bhabha scattering differential cross section of the
interference of the two-loop photonic boxes with the tree-level diagrams, up to
terms suppressed by positive powers of the electron mass. We evaluate
numerically the various contributions to the cross section, paying particular
attention to the comparison between exact and expanded results.Comment: 35 pages, 18 figure
QCD Radiative Corrections to the Leptonic Decay Rate of the B_c Meson
The QCD radiative corrections to the leptonic decay rate of the meson
are calculated using the formalism of nonrelativistic QCD (NRQCD) to separate
short-distance and long-distance effects. The decay constant is factored
into a sum of NRQCD matrix elements each multiplied by a short-distance
coefficient. The short-distance coefficient for the leading matrix element is
calculated to order by matching a perturbative calculation in full
QCD with the corresponding perturbative calculation in NRQCD. This
short-distance correction decreases the leptonic decay rate by approximately
.Comment: Changed Eq. 2 to read 1/(8 \pi), put in a missing i M_{B_c} in Eq.
18, and put in a normalisation factor of 2 M_{B_c} in Eq. 19
Stability of the Higgs mass in theories with extra dimensions
We analyze the ultraviolet stability of the Higgs mass in recently proposed
Kaluza-Klein models compactified on S_1/Z_2 or S_1/(Z_2\times Z_2'), both at
the field theory and string theory level. Fayet-Iliopoulos terms of U(1)
hypercharge are shown to be of vital importance for this discussion. Models
with a single Higgs doublet seem to be generically affected by quadratic
divergences.Comment: Contribution to the Proceedings of Durham IPPP meeting May 2001.(12
pages, LaTeX
Lepton-Flavour Violation in Ordinary and Supersymmetric Grand Unified Theories
By an explicit calculation we show that in ordinary SU(5) logarithmic
divergence in the amplitude of cancels among diagrams and
remaining finite part is suppressed by at least . In SUSY SU(5),
when the effect of flavour changing wave function renormalization is taken into
account such logarithmic correction disappears, provided a condition is met
among SUSY breaking masses. In SUGRA-inspired SUSY GUT the remaining
logarithmic effect is argued not to be taken as a prediction of the theory.Comment: 8 pages, LaTeX209 file, using axodraw.st
- …