12,283 research outputs found

    What brakes the Crab pulsar?

    Get PDF
    Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2.0e10 turns. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.Comment: 11 pages, 8 figures, 3 tables; accepted for publication in Astronomy & Astrophysic

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Nori 1-motives

    Full text link
    Let EHM be Nori's category of effective homological mixed motives. In this paper, we consider the thick abelian subcategory EHM_1 generated by the i-th relative homology of pairs of varieties for i = 0,1. We show that EHM_1 is naturally equivalent to the abelian category M_1 of Deligne 1-motives with torsion; this is our main theorem. Along the way, we obtain several interesting results. Firstly, we realize M_1 as the universal abelian category obtained, using Nori's formalism, from the Betti representation of an explicit diagram of curves. Secondly, we obtain a conceptual proof of a theorem of Vologodsky on realizations of 1-motives. Thirdly, we verify a conjecture of Deligne on extensions of 1-motives in the category of mixed realizations for those extensions that are effective in Nori's sense

    Calculation of the One- and Two-Loop Lamb Shift for Arbitrary Excited Hydrogenic States

    Get PDF
    General expressions for quantum electrodynamic corrections to the one-loop self-energy [of order alpha(Zalpha)^6] and for the two-loop Lamb shift [of order alpha^2(Z\alpha)^] are derived. The latter includes all diagrams with closed fermion loops. The general results are valid for arbitrary excited non-S hydrogenic states and for the normalized Lamb shift difference of S states, defined as Delta_n = n^3 DeltaE(nS) - DeltaE(1S). We present numerical results for one-loop and two-loop corrections for excited S, P and D states. In particular, the normalized Lamb shift difference of S states is calculated with an uncertainty of order 0.1 kHz.Comment: 4 pages, RevTe

    Neutrino Mass Squared Differences in the Exact Solution of a 3-3-1 Gauge Model without Exotic Electric Charges

    Get PDF
    The mass splittings for the Majorana neutrinos in the exact solution of a particular 3-3-1 gauge model are computed here in detail. Since both sin2θ130\sin^{2}\theta_{13}\simeq0 and the mass splittings ratio rΔ0.033r_{\Delta}\simeq0.033 are taken into account, the analytical calculations seem to predict an inverted mass hierarchy and a mixing matrix with a texture based on a very close approximation to the bi-maximal mixing. The resulting formulas for the mass squared differences can naturally accomodate the available data if the unique free parameter (aa) gets very small values (1015\sim10^{-15}). Consequently, the smallness of the parameter requires (according to our method) a large breaking scale 106107\sim10^{6}-10^{7} TeV in the model. Hence, the results concerning the neutrino mass splittings may lead to a more precise tuning in the exact solution of the 3-3-1 model of interest, being able - at the same time - to recover all the Standard Model phenomenology and predict the mass spectrum of the new gauge bosons Z,X,YZ^{\prime},X,Y in accordance with the actual data. The minimal absolute mass in the neutrino sector is also obtained - m00.0035m_{0}\simeq0.0035 eV - in the case of our suitable approximation for the bi-maxcimal mixing.Comment: 10 pages, no figure

    Bipartite Bell inequalities for hyperentangled states

    Full text link
    We show that bipartite Bell inequalities based on the Einstein-Podolsky-Rosen criterion for elements of reality and derived from the properties of some hyperentangled states allow feasible experimental verifications of the fact that quantum nonlocality grows exponentially with the size of the subsystems, and Bell loophole-free tests with currently available photodetection efficiencies.Comment: REVTeX4, 5 page
    corecore