109 research outputs found

    Impact of muscle fatigue on mechanics and motor control of walking

    Get PDF
    Dieen, J.H. van [Promotor]Bucken Gobbi, L.T. [Promotor]Pijnappels, M.A.G.M. [Copromotor

    Recognised-by-law versus other identification systems in pigs: piglets discomfort evaluation and performance testing

    Get PDF
    The aim of the study was to evaluate the performance of recognised by Italian law (tattoos) and other (ear tags and injectable transponders) identification systems and to investigate if they caused different levels of short-term discomfort in piglets. Ninety-six ten-day-old piglets – equally assigned to four experimental groups – were identified with electronic ear tags (EET), transponders injected in the auricle base (TAB), in intraperitoneal position (TIP), or ear tattoo (T). Losses, breakages and readability of the identification devices were recorded to evaluate their efficiency. Forty-eight piglets were observed continuously for 5 min after identification. Behavioural indicators of pain, discomfort or ease were recorded in terms of duration of occurrence or frequency. Non-parametric analyses of variance were used to compare time required for the application of the devices and behavioural reactions of piglets. No healing problems or breakages of the electronic devices were observed during the trial. The readability after nine months was 93.8% for EET and TIP, 86.7% for TAB and 0% for T. The time required for the application differed significantly (P<0.001) among the four identification devices. EET and TIP showed better results than T considering losses, breakages, readability and time required for application. Behaviours most frequently recorded were head shaking and ear scratching, observed more frequently in piglets after the application of EET (P<0.001). The application of these identification devices caused a mild discomfort in piglets; further studies should investigate in detail the intensity and duration of reactions to the identification procedure

    Holomorphic Factorization for a Quantum Tetrahedron

    Full text link
    We provide a holomorphic description of the Hilbert space H(j_1,..,j_n) of SU(2)-invariant tensors (intertwiners) and establish a holomorphically factorized formula for the decomposition of identity in H(j_1,..,j_n). Interestingly, the integration kernel that appears in the decomposition formula turns out to be the n-point function of bulk/boundary dualities of string theory. Our results provide a new interpretation for this quantity as being, in the limit of large conformal dimensions, the exponential of the Kahler potential of the symplectic manifold whose quantization gives H(j_1,..,j_n). For the case n=4, the symplectic manifold in question has the interpretation of the space of "shapes" of a geometric tetrahedron with fixed face areas, and our results provide a description for the quantum tetrahedron in terms of holomorphic coherent states. We describe how the holomorphic intertwiners are related to the usual real ones by computing their overlap. The semi-classical analysis of these overlap coefficients in the case of large spins allows us to obtain an explicit relation between the real and holomorphic description of the space of shapes of the tetrahedron. Our results are of direct relevance for the subjects of loop quantum gravity and spin foams, but also add an interesting new twist to the story of the bulk/boundary correspondence.Comment: 45 pages; published versio

    Optogalvanic Spectroscopy of Metastable States in Yb^{+}

    Full text link
    The metastable ^{2}F_{7/2} and ^{2}D_{3/2} states of Yb^{+} are of interest for applications in metrology and quantum information and also act as dark states in laser cooling. These metastable states are commonly repumped to the ground state via the 638.6 nm ^{2}F_{7/2} -- ^{1}D[5/2]_{5/2} and 935.2 nm ^{2}D_{3/2} -- ^{3}D[3/2]_{1/2} transitions. We have performed optogalvanic spectroscopy of these transitions in Yb^{+} ions generated in a discharge. We measure the pressure broadening coefficient for the 638.6 nm transition to be 70 \pm 10 MHz mbar^{-1}. We place an upper bound of 375 MHz/nucleon on the 638.6 nm isotope splitting and show that our observations are consistent with theory for the hyperfine splitting. Our measurements of the 935.2 nm transition extend those made by Sugiyama et al, showing well-resolved isotope and hyperfine splitting. We obtain high signal to noise, sufficient for laser stabilisation applications.Comment: 8 pages, 5 figure

    Radiative Corrections to One-Photon Decays of Hydrogenic Ions

    Full text link
    Radiative corrections to the decay rate of n=2 states of hydrogenic ions are calculated. The transitions considered are the M1 decay of the 2s state to the ground state and the E1(M2) decays of the 2p1/22p_{1/2} and 2p3/22p_{3/2} states to the ground state. The radiative corrections start in order α(Zα)2\alpha (Z \alpha)^2, but the method used sums all orders of ZαZ\alpha. The leading α(Zα)2\alpha (Z\alpha)^2 correction for the E1 decays is calculated and compared with the exact result. The extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure

    Generating mixtures of spatial qubits

    Full text link
    In a recent letter [Phys. Rev. Lett. 94, 100501 (2005)], we presented a scheme for generating pure entangled states of spatial qudits (DD-dimensional quantum systems) by using the momentum transverse correlation of the parametric down-converted photons. In this work we discuss a generalization of this process to enable the creation of mixed states. With the technique proposed we experimentally generated a mixture of two spatial qubits.Comment: To appear in Optics Communication

    Spatio-temporal dynamics of quantum-well excitons

    Get PDF
    We investigate the lateral transport of excitons in ZnSe quantum wells by using time-resolved micro-photoluminescence enhanced by the introduction of a solid immersion lens. The spatial and temporal resolutions are 200 nm and 5 ps, respectively. Strong deviation from classical diffusion is observed up to 400 ps. This feature is attributed to the hot-exciton effects, consistent with previous experiments under cw excitation. The coupled transport-relaxation process of hot excitons is modelled by Monte Carlo simulation. We prove that two basic assumptions typically accepted in photoluminescence investigations on excitonic transport, namely (i) the classical diffusion model as well as (ii) the equivalence between the temporal and spatial evolution of the exciton population and of the measured photoluminescence, are not valid for low-temperature experiments.Comment: 8 pages, 6 figure

    Kaluza-Klein gravitino production with a single photon at e^+ e^- colliders

    Full text link
    In a supersymmetric large extra dimension scenario, the production of Kaluza-Klein gravitinos accompanied by a photino at e^+ e^- colliders is studied. We assume that a bulk supersymmetry is softly broken on our brane such that the low-energy theory resembles the MSSM. Low energy supersymmetry breaking is further assumed as in GMSB, leading to sub-eV mass shift in each KK mode of the gravitino from the corresponding graviton KK mode. Since the photino decays within a detector due to its sufficiently large inclusive decay rate into a photon and a gravitino, the process e^+ e^- -> photino + gravitino yields single photon events with missing energy. Even if the total cross section can be substantial at sqrt(s)=500 GeV, the KK graviton background of e^+ e^- -> photon + graviton is kinematically advantageous and thus much larger. It is shown that the observable, sigma(e^-_L)-sigma(e^-_R), can completely eliminate the KK graviton background but retain most of the KK gravitino signal, which provides a unique and robust method to probe the supersymmetric bulk.Comment: Reference added and typos correcte
    • 

    corecore