4,478 research outputs found

    Nodal-to-nodeless superconducting order parameter in LaFeAs1x_{1-x}Px_xO synthesized under high pressure

    Get PDF
    Similar to chemical doping, pressure produces and stabilizes new phases of known materials, whose properties may differ greatly from those of their standard counterparts. Here, by considering a series of LaFeAs1x_{1-x}Px_xO iron-pnictides synthesized under high-pressure high-temperature conditions, we investigate the simultaneous effects of pressure and isoelectronic doping in the 1111 family. Results of numerous macro- and microscopic technique measurements, unambiguously show a radically different phase diagram for the pressure-grown materials, characterized by the lack of magnetic order and the persistence of superconductivity across the whole 0.3x0.70.3 \leq x \leq 0.7 doping range. This unexpected scenario is accompanied by a branching in the electronic properties across x=0.5x = 0.5, involving both the normal and superconducting phases. Most notably, the superconducting order parameter evolves from nodal (for x<0.5x < 0.5) to nodeless (for x0.5x \geq 0.5), in clear contrast to other 1111 and 122 iron-based materials grown under ambient-pressure conditions.Comment: 9 pages, 7 figures, Suppl. materia

    Design and Performance of the CMS Pixel Detector Readout Chip

    Full text link
    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.Comment: 8 pages, 11 figures. Contribution to the Proceedings of the Pixel2005 Workshop, Bonn, German

    Constraints and Reality Conditions in the Ashtekar Formulation of General Relativity

    Full text link
    We show how to treat the constraints and reality conditions in the SO(3)SO(3)-ADM (Ashtekar) formulation of general relativity, for the case of a vacuum spacetime with a cosmological constant. We clarify the difference between the reality conditions on the metric and on the triad. Assuming the triad reality condition, we find a new variable, allowing us to solve the gauge constraint equations and the reality conditions simultaneously.Comment: LaTeX file, 12 pages, no figures; to appear in Classical and Quantum Gravit

    On the diffeomorphism commutators of lattice quantum gravity

    Get PDF
    We show that the algebra of discretized spatial diffeomorphism constraints in Hamiltonian lattice quantum gravity closes without anomalies in the limit of small lattice spacing. The result holds for arbitrary factor-ordering and for a variety of different discretizations of the continuum constraints, and thus generalizes an earlier calculation by Renteln.Comment: 16 pages, Te

    Room-temperature structural phase transition in the quasi-2D spin-1/2 Heisenberg antiferromagnet Cu(pz)2_2(ClO4_4)2_2

    Full text link
    Cu(pz)2_2(ClO4_4)2_2 (with pz denoting pyrazine C4_4H4_4N2_2) is a two-dimensional spin-1/2 square-lattice antiferromagnet with TNT_{\mathrm{N}} = 4.24 K. Due to a persisting focus on the low-temperature magnetic properties, its room-temperature structural and physical properties caught no attention up to now. Here we report a study of the structural features of Cu(pz)2_2(ClO4_4)2_2 in the paramagnetic phase, up to 330 K. By employing magnetization, specific heat, 35^{35}Cl nuclear magnetic resonance, and neutron diffraction measurements, we provide evidence of a second-order phase transition at TT^{\star} = 294 K, not reported before. The absence of a magnetic ordering across TT^{\star} in the magnetization data, yet the presence of a sizable anomaly in the specific heat, suggest a structural order-to-disorder type transition. NMR and neutron-diffraction data corroborate our conjecture, by revealing subtle angular distortions of the pyrazine rings and of ClO4^-_4 counteranion tetrahedra, shown to adopt a configuration of higher symmetry above the transition temperature.Comment: 10 pages, 12 figure

    Creation of the universe with a stealth scalar field

    Full text link
    The stealth scalar field is a non-trivial configuration without any back-reaction to geometry, which is characteristic for non-minimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by the Hartle and Hawking's semi-classical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe adde

    Area spectrum in Lorentz covariant loop gravity

    Get PDF
    We use the manifestly Lorentz covariant canonical formalism to evaluate eigenvalues of the area operator acting on Wilson lines. To this end we modify the standard definition of the loop states to make it applicable to the present case of non-commutative connections. The area operator is diagonalized by using the usual shift ambiguity in definition of the connection. The eigenvalues are then expressed through quadratic Casimir operators. No dependence on the Immirzi parameter appears.Comment: 12 pages, RevTEX; improved layout, typos corrected, references added; changes in the discussion in sec. IIIB and

    Unitary evolution of free massless fields in de Sitter space-time

    Full text link
    We consider the quantum dynamics of a massless scalar field in de Sitter space-time. The classical evolution is represented by a canonical transformation on the phase space for the field theory. By studying the corresponding Bogoliubov transformations, we show that the symplectic map that encodes the evolution between two instants of time cannot be unitarily implemented on any Fock space built from a SO(4)-symmetric complex structure. We will show also that, in contrast with some effectively lower dimensional examples arising from Quantum General Relativity such as Gowdy models, it is impossible to find a time dependent conformal redefinition of the massless scalar field leading to a quantum unitary dynamics.Comment: 20 pages. Comments and references adde
    corecore