4,738 research outputs found

    Social welfare in one-sided matchings: Random priority and beyond

    Full text link
    We study the problem of approximate social welfare maximization (without money) in one-sided matching problems when agents have unrestricted cardinal preferences over a finite set of items. Random priority is a very well-known truthful-in-expectation mechanism for the problem. We prove that the approximation ratio of random priority is Theta(n^{-1/2}) while no truthful-in-expectation mechanism can achieve an approximation ratio better than O(n^{-1/2}), where n is the number of agents and items. Furthermore, we prove that the approximation ratio of all ordinal (not necessarily truthful-in-expectation) mechanisms is upper bounded by O(n^{-1/2}), indicating that random priority is asymptotically the best truthful-in-expectation mechanism and the best ordinal mechanism for the problem.Comment: 13 page

    Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data

    Get PDF
    We present genesis, a library for working with phylogenetic data, and gappa, an accompanying command-line tool for conducting typical analyses on such data. The tools target phylogenetic trees and phylogenetic placements, sequences, taxonomies and other relevant data types, offer high-level simplicity as well as lowlevel customizability, and are computationally efficient, well-tested and field-proven

    Polyether from a biobased Janus molecule as surfactant for carbon nanotubes

    Get PDF
    A new polyether (PE) was prepared from a biobased Janus molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3- propanediol (serinol pyrrole, SP). SP was synthesized with very high yield (about 96%) and high atom efficiency (about 80%) by reacting a biosourced molecule, such as serinol, with 2,5-hexanedione in the absence of solvent or catalyst. The reaction of SP with 1,6-dibromohexane led to PE oligomers, that were used as surfactants for multiwalled carbon nanotubes (MWCNT), in ecofriendly polar solvents such as acetone and ethyl acetate. The synergic interaction of aromatic rings and oxyalkylene sequences with the carbon allotrope led to dramatic improvement of surfactant efficiency: only 24% of SP based PE was extracted with ethyl acetate from the adduct with MWCNT, versus 98% of a typical pluronic surfactant. Suspensions of MWCNT-PE adducts in ethyl acetate were stable for months. High resolution transmission electron microscopy revealed a film of oligomers tightly adhered to MWCNT surface

    Modeling storm water control operated by green roofs at the urban catchment scale

    Get PDF
    The urban catchment of Colle Ometti, in the town of Genoa, Italy, where storm water runoff is monitored for both quantity and quality, was selected as a test site for the hydrologic modelling of greening scenarios. Although no green roof installations are now present in the area, this study modelled \u2013 using extensive green roof details \u2013 the hydrologic effects of three hypothetical roof greenin scenarios at the catchment scale (conversion of 10%, 20%, and 100% impervious to green roofs). The modelling of green roof performances was undertaken using the EPA SWMM and was calibrated and validated on a small size green roof system completed in September 2007 in the laboratory of the Department of Civil, Environmental and Architectural Engineering (DICAT \u2013 University of Genoa). Precipitation scenarios were developed based on eighteen years of high resolution (one minute) rain gauge data in Genoa (1990-2007).Hydrologic modelling demonstrated that widespread green roof implementation can significantly reduce peak runoff rates and the lag time (7min and 15 min) runoff volume (detention effect) while after introducing the drying process operated by evapo-traspiration during the inter-event period the runoff volume reduction at the event scale (retention effect) can also be appreciated

    The Faber-Jackson relation for early-type galaxies: Dependence on the magnitude range

    Full text link
    We take a sample of early-type galaxies from the Sloan Digital Sky Survey (SDSS-DR7, \sim 90 000 galaxies) spanning a range of approximately 7 magmag in both gg and rr filters and analyse the behaviour of the Faber-Jackson relation parameters as functions of the magnitude range. We calculate the parameters in two ways: i) We consider the faintest (brightest) galaxies in each sample and we progressively increase the width of the magnitude interval by inclusion of the brighter (fainter) galaxies (increasing-magnitude-intervals), and ii) we consider narrow-magnitude intervals of the same width (ΔM=1.0\Delta M = 1.0 magmag) over the whole magnitude range available (narrow-magnitude-intervals). Our main results are that: i) in both increasing and narrow-magnitude-intervals the Faber-Jackson relation parameters change systematically, ii) non-parametric tests show that the fluctuations in the values of the slope of the Faber-Jackson relation are not products of chance variations. We conclude that the values of the Faber-Jackson relation parameters depend on the width of the magnitude range and the luminosity of galaxies within the magnitude range. This dependence is caused, to a great extent by the selection effects and because the geometrical shape of the distribution of galaxies on the Mlog(σ0)M - \log (\sigma_{0}) plane depends on luminosity. We therefore emphasize that if the luminosity of galaxies or the width of the magnitude range or both are not taken into consideration when comparing the structural relations of galaxy samples for different wavelengths, environments, redshifts and luminosities, any differences found may be misinterpreted.Comment: 15 pages, 5 figures. A&A. Accepte

    GATE simulation for medical physics with genius Web portal

    Get PDF
    présenté par C. ThiamPCSV team of the LPC laboratory in Clermont-Ferrand is involved in the deployment of biomedical applications on the grid architecture. One of these applications deals with the deployment of GATE (Geant4 Application for Tomographic Emission) for medical physics application. The aim of the developments actually performed is to enable an application of the GATE platform in clinical routine. However, this perspective is only possible if the computing time and user time are highly reduced. The new grid architecture, developed within the framework of the European project Enabling Grid for E-sciencE (EGEE) is there to answer this requirement. The use of the grid resources must be transparent easy and rapid for the medical physicists. For this perpose, we adapted the GENIUS web portal in order to facilitate the GATE simulations planning on the grid. We will present a demonstration of the GENIUS portal which integrates all the functionalities of EGEE: to create, to submit and manage GATE jobs on the grid architecture. Our GATE activities for dosimetry application entered in to direct phase of evaluation by the cancer treatment center of Clermont Ferrand (Centre Jean perrin).A work station is currently available in this center to test the use of GATE application on the grid through GENIUS. This portal will allow in a long term to use GATE application in brachytherapy and radiotherapy treatment planning using medical data (medical images, DICOM, binary data dose calculation in the heterogeneous mediums) and to analyze the results obtained in visual form. Other functionalities are under development and will make possible to register medical data on grid storages elements and to manage them. However, these data must be anonymised before their recording on the grid. Their access via the GENIUS portal must be made safe and fast (compared simulation computing time). In order to be sure that the medical data are accessible for calculations, their replication on various storage element (SE) should be possible. The grid services give the possibility of managing this information in a free way and transparently. Operations of data handling and catalogues on the grid are ensured by the Replica Manager system which integrates all tools making it possible to manage data on the grid. The computing grid give promising results and meet a definite need: reach acceptable computing time for a future use of Monte Carlo simulations for treatment planning in brachytherapy and radiotherapy

    Active shape correction of a thin glass/plastic X-ray mirror

    Full text link
    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project
    corecore