205 research outputs found
Study of the Mechanisms of Flux Pinning in Type 2 Superconductors
Flux pinning mechanisms in type-2 semiconductors and specific heat measurements on annealed and deformed pure niobium sample
Cryogenic magnetometer development Final report, 1 Jul. 1964 - 7 Mar. 1967
Magnetometers for measuring stable magnetic fields produced by low field superconducting shield
Rollable Thin-Shell Nanolaminate Mirrors
A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror
Recommended from our members
Interface reaction characterization and interfacial effects in multilayers
The performance of multilayer structures as x-ray, soft x-ray and extreme ultraviolet optics is dependent on the nature of the interfaces between constituent layers. Interfacial structure and the interaction between atoms at interfaces have also been demonstrated to have significant impact on the physical properties of multilayer materials in general and thus on their performance in other applied areas. As short summary of the approaches to characterization of interfaces in multilayer structures is presented as background. Two new techniques for the experimental evaluation of interfacial structure and interfacial structure effects are then considered and examples presented. Model calculations for one of these techniques which support the experimental results are also presented. In conclusion these results are reviewed of and an assessment of their implications relative to multilayer development given
Recommended from our members
Interfacial Effects in Multilayers
Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general
The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom
The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory
X ray imaging microscope for cancer research
The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research
The Multi-Spectral Solar Telescope Array (MSSTA)
In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona
Recommended from our members
Mechanical Properties of Cu/Ta Multilayers Prepared by Magnetron Sputtering
The microstructure and mechanical properties of sputtered Cu/Ta multilayers were studied. X- ray diffraction and transmission electron microscopy characterization indicate that both the Ta and Cu in the 2 nm period multilayer are predominantly amorphous, while in longer period samples, the layers are crystalline, with the metastable tetragonal {beta}-Ta observed. No observable microstructure changes upon annealing at 300{degrees}C were found. An average Vickers micro- hardness value of about 5.5 GPa was measured, which increases about 5% upon annealing at 300{degrees}C. Residual stress in the multilayers and its dependence on thermal annealing are reported. The relationships between microstructure and mechanical properties in the multilayers are discussed
Recommended from our members
Nanostructure Multilayer Materials for Capacitor Energy Storage for Eh Vehicles
Acceleration and regenerative breaking for electric and hybrid vehicles require high power capacitors to complement energy sources. Large, flat nanostructure multilayer capacitors (NMCS) can provide load balancing capacitance in EHVs of the future. Additional uses include snubber capacitors for power electronics such as motor drives, energy discharge capacitors for lasers, and numerous industrial and military electronics applications [1]. In the present work, we demonstrate the effectiveness of LLNL`s multilayer materials technology by fabricating NMC test films with high energy and power density
- …