81 research outputs found

    Influence of protozoan grazing on the marine geochemistry of particle reactive trace metals

    Get PDF
    Thesis (Ph.D.)--Joint Program in Oceanography, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, 1998.Includes bibliographical references.by Katherine Barbeau.Ph.D

    Iron-binding ligands in the Southern California Current System : mechanistic studies

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 27, doi:10.3389/fmars.2016.00027.The distributions of dissolved iron and organic iron-binding ligands were examined in water column profiles and deckboard incubation experiments in the southern California Current System (sCCS) along a transition from coastal to semi-oligotrophic waters. Analysis of the iron-binding ligand pool by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) using multiple analytical windows (MAWs) revealed three classes of iron-binding ligands present throughout the water column (L1−L3), whose distributions closely matched those of dissolved iron and nitrate. Despite significant biogeochemical gradients, ligand profiles were similar between stations, with surface minima in strong ligands (L1 and L2), and relatively constant concentrations of weaker ligands (L3) down to 500 m. A phytoplankton grow-out incubation, initiated from an iron-limited water mass, showed dynamic temporal cycling of iron-binding ligands. A biological iron model was able to capture the patterns of the strong ligands in the grow-out incubation relatively well with only the microbial community as a biological source. An experiment focused on remineralization of particulate organic matter showed production of both strong and weak iron-binding ligands by the heterotrophic community, supporting a mechanism for in-situ production of both strong and weak iron-binding ligands in the subsurface water column. Photochemical experiments showed a variable influence of sunlight on the degradation of natural iron-binding ligands, providing some evidence to explain differences in surface ligand concentrations between stations. Patterns in ligand distributions between profiles and in the incubation experiments were primarily related to macronutrient concentrations, suggesting microbial remineralization processes might dominate on longer time-scales over short-term changes associated with photochemistry or phytoplankton growth.RB, KB, and MC were supported by NSF OCE #10-2667 for the CCE-LTER program. MJ was funded by NSF ANT grant 0948378 and Harbor Branch Oceanographic Institute Foundation

    The composition of dissolved iron in the dusty surface ocean : an exploration using size-fractionated iron-binding ligands

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 173 (2015): 125-135, doi:10.1016/j.marchem.2014.09.002.The size partitioning of dissolved iron and organic iron-binding ligands into soluble and colloidal phases was investigated in the upper 150 m of two stations along the GA03 U.S. GEOTRACES North Atlantic transect. The size fractionation was completed using cross-flow filtration methods, followed by analysis by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) for iron and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) for iron-binding ligands. On average, 80% of the 0.1-0.65 nM dissolved iron (<0.2 μm) was partitioned into the colloidal iron (cFe) size fraction (10 kDa < cFe < 0.2 μm), as expected for areas of the ocean underlying a dust plume. The 1.3-2.0 nM strong organic iron-binding ligands, however, overwhelmingly (75-77%) fell into the soluble size fraction (<10 kDa). As a result, modeling the dissolved iron size fractionation at equilibrium using the observed ligand partitioning did not accurately predict the iron partitioning into colloidal and soluble pools. This suggests that either a portion of colloidal ligands are missed by current electrochemical methods because they react with iron more slowly than the equilibration time of our CLE-ACSV method, or part of the observed colloidal iron is actually inorganic in composition and thus cannot be predicted by our model of unbound iron-binding ligands. This potentially contradicts the prevailing view that greater than 99% of dissolved iron in the ocean is organically complexed. Untangling the chemical form of iron in the upper ocean has important implications for surface ocean biogeochemistry and may affect iron uptake by phytoplankton.J.N. Fitzsimmons was funded by a National Science Foundation Graduate Research Fellowship (NSF Award #0645960). Research funding was provided by the National Science Foundation (OCE #0926204 and OCE #0926197) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award #EF-0424599) to E.A. Boyle. R.M. Bundy was partially funded by NSF OCE-0550302 and NSF OCE-1233733 to K.A. Barbeau and an NSF-GK12 graduate fellowship

    Ecological Transitions in a Coastal Upwelling Ecosystem

    Get PDF
    The southern California Current Ecosystem (CCE) is a dynamic eastern boundary current ecosystem that is forced by ocean-atmosphere variability on interannual, multidecadal, and long-term secular time scales. Recent evidence suggests that apparent abrupt transitions in ecosystem conditions reflect linear tracking of the physical environment rather than oscillations between alternative preferred states. A space-for-time exchange is one approach that permits use of natural spatial variability in the CCE to develop a mechanistic understanding needed to project future temporal changes. The role of (sub)mesoscale frontal systems in altering rates of nutrient transport, primary and secondary production, export fluxes, and the rates of encounters between predators and prey is an issue central to this pelagic ecosystem and its future trajectory because the occurrence of such frontal features is increasing

    Using 67Cu to Study the Biogeochemical Cycling of Copper in the Northeast Subarctic Pacific Ocean

    Get PDF
    Microbial copper (Cu) nutrition and dissolved Cu speciation were surveyed along Line P, a coastal to open ocean transect that extends from the coast of British Columbia, Canada, to the high-nutrient-low-chlorophyll (HNLC) zone of the northeast subarctic Pacific Ocean. Steady-state size fractionated Cu uptake rates and Cu:C assimilation ratios were determined at in situ Cu concentrations and speciation using a 67Cu tracer method. The cellular Cu:C ratios that we measured (~30 µmol Cu mol C-1) are similar to recent estimates using synchrotron x-ray fluorescence (SXRF), suggesting that the 67Cu method can determine in situ metabolic Cu demands. We examined how environmental changes along the Line P transect influenced Cu metabolism in the sub-microplankton community. Cellular Cu:C assimilation ratios and uptake rates were compared with net primary productivity, bacterial abundance and productivity, total dissolved Cu, Cu speciation, and a suite of other chemical and biological parameters. Total dissolved Cu concentrations ([Cu]d) were within a narrow range (1.46 to 2.79 nM), and Cu was bound to a ~5-fold excess of strong ligands with conditional stability constants ( ) of ~1014. Free Cu2+ concentrations were low (pCu 14.4 to 15.1), and total and size fractionated net primary productivity (NPPV; µg C L-1 d-1) were negatively correlated with inorganic Cu concentrations ([Cu′]). We suggest this is due to greater Cu′ drawdown by faster growing phytoplankton populations. Using the relationship between [Cu′] drawdown and NPPV, we calculated a regional photosynthetic Cu:C drawdown export ratio between 1.5 and 15 µmol Cu mol C-1, and a mixed layer residence time (2.5 to 8 years) that is similar to other independent estimates (2-12 years). Total particulate Cu uptake rates were between 22 and 125 times faster than estimates of Cu export; this is possibly mediated by rapid cellular Cu uptake and efflux by phytoplankton and bacteria or the effects of grazers and bacterial remineralization on dissolved Cu. These results provide a more detailed understanding of the interactions between Cu speciation and microorganisms in seawater, and present evidence that marine phytoplankton modify Cu speciation in the open ocean

    Patterns of Diatom Diversity Correlate With Dissolved Trace Metal Concentrations and Longitudinal Position in the Notheast Pacific Coastal Offshore Transition Zone

    Get PDF
    Diatoms are important primary producers in the northeast Pacific Ocean, with their productivity closely linked to pulses of trace elements in the western high nitrate, low chlorophyll (HNLC) region of the oceanographic time series transect \u27Line P.\u27 Recently, the coastal-HNLC transition zone of the Line P transect was identified as a hotspot of phytoplankton productivity, potentially controlled by a combination of trace element and macronutrient concentrations. Here we describe diatom community composition in the eastern Line P transect, including the coastal- HNLC transition zone, with a method using high-throughput sequencing of diatom 18S gene amplicons. We identified significant correlations between shifting diatom community composition and longitude combined with concentrations of dissolved copper and 2 other dissolved trace metals (dissolved Fe [dFe] and/or dissolved zinc) and/or a physical factor (salinity or density). None of these variables on its own was significantly correlated with shifts in community composition, and 3 of the factors (dFe, salinity, and density) correlated with one another. Longitude could incorporate multiple factors that may influence diatom communities, including distance from shore, proximity of sampling stations, and an integration of previous pulses of macro- and micro-nutrients. We also evaluated in situ Fe limitation of the diatom Thalassiosira oceanica using a quantitative reverse-transcription polymerase chain reaction method, and found biological evidence of Fe stress in samples from the coastal-HNLC transition zone. Combined, our results support a prior hypothesis that dissolved trace metals as well as longitudinal distance may be important to diatom diversity in the coastal-HNLC transition zone of the Line P transect

    Seasonal Dispersal of Fjord Meltwaters as an Important Source of Iron and Manganese to Coastal Antarctic Phytoplankton

    Get PDF
    Glacial meltwater from the western Antarctic Ice Sheet is hypothesized to be an important source of cryospheric iron, fertilizing the Southern Ocean, yet its trace-metal composition and factors that control its dispersal remain poorly constrained. Here we characterize meltwater iron sources in a heavily glaciated western Antarctic Peninsula (WAP) fjord. Using dissolved and particulate ratios of manganese to iron in meltwaters, porewaters, and seawater, we show that surface glacial melt and subglacial plumes contribute to the seasonal cycle of iron and manganese within a fjord still relatively unaffected by climate-change-induced glacial retreat. Organic ligands derived from the phytoplankton bloom and the glaciers bind dissolved iron and facilitate the solubilization of particulate iron downstream. Using a numerical model, we show that buoyant plumes generated by outflow from the subglacial hydrologic system, enriched in labile particulate trace metals derived from a chemically modified crustal source, can supply iron to the fjord euphotic zone through vertical mixing. We also show that prolonged katabatic wind events enhance export of meltwater out of the fjord. Thus, we identify an important atmosphere–ice–ocean coupling intimately tied to coastal iron biogeochemistry and primary productivity along the WAP

    Glacial Discharge and its Impact on Phytoplankton Taxonomic Composition in an Antarctic Fjord

    Get PDF
    The influence of glacial discharge on phytoplankton community composition remains an open question. The Antarctic Peninsula fjords offer an ideal system to understand the effect of ice-ocean forcing on phytoplankton community, providing an extreme in the spatial gradient from the glacio-marine boundary to the Western Antarctic Peninsula (WAP) continental shelf. In Andvord Bay, we found that glacial meltwater input altered surface salinity and was enriched in dissolved iron and nitrate, supporting phytoplankton biomass. The three major groups of phytoplankton fueled by glacial input were: cryptophytes, diatoms, and a group of unidentified small flagellates. In December, cryptophytes dominated the phytoplankton community and were correlated with relatively warmer temperatures in the surface layer; in addition, contrary to our hypothesis, no diatom bloom was observed in the fjord in spite of dissolved iron concentration >1 nM. By April, after the growth season, the overall phytoplankton abundance had decreased by an order of magnitude. Phytoplankton, in particular diatoms, were then limited by daytime length despite abundant macro-nutrient and iron concentrations. Mixed flagellates emerged as the dominant group during April due to the decline of other major taxa. Deep-learning algorithms for predicting the abundance of each major phytoplankton group captured the effects of these environmental factors on the phytoplankton community. Our results show that the fjord, under the influence of glacial meltwater, has relatively high phytoplankton biomass combined with high macro- and trace nutrient concentrations when compared to other WAP regions influenced by sea ice melting. Based on this study, we confirm that flagellates can be the dominant taxon in Antarctic fjords and we propose that iron concentration alone is insufficient to predict diatom growth. Furthermore, buoyant meltwater plumes can enrich the fjord with nitrate even if the main circulation is not driven by glacier meltwater discharge. As glacial meltwater continues to alter the phytoplankton taxonomic composition, it will have an important implication for higher trophic levels and add significant uncertainties to the prediction of regional ecosystem dynamics and biogeochemistry.Fil: Jack Pan, B.. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Vernet, Maria. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Manck, Lauren. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Forsch, Kiefer. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Ekern, Lindsey. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Mascioni, Martina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Ficología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Barbeau, Katherine. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Almandoz, Gaston Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Ficología; ArgentinaFil: Orona, Alexander James. Ocean Motion Technologies; Estados UnidosOcean Sciences Meeting 2020Estados UnidosOcean Sciences Meetin
    corecore