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Microbial copper (Cu) nutrition and dissolved Cu speciation were surveyed along Line
P, a coastal to open ocean transect that extends from the coast of British Columbia,
Canada, to the high-nutrient-low-chlorophyll (HNLC) zone of the northeast subarctic
Pacific Ocean. Steady-state size fractionated Cu uptake rates and Cu:C assimilation
ratios were determined at in situ Cu concentrations and speciation using a 67Cu tracer
method. The cellular Cu:C ratios that we measured (∼30 μmol Cu mol C−1) are similar to
recent estimates using synchrotron x-ray fluorescence (SXRF), suggesting that the 67Cu
method can determine in situ metabolic Cu demands. We examined how environmental
changes along the Line P transect influenced Cu metabolism in the sub-microplankton
community. Cellular Cu:C assimilation ratios and uptake rates were compared with
net primary productivity, bacterial abundance and productivity, total dissolved Cu, Cu
speciation, and a suite of other chemical and biological parameters. Total dissolved Cu
concentrations ([Cu]d) were within a narrow range (1.5–2.8 nM), and Cu was bound to a
∼5-fold excess of strong ligands with conditional stability constants (Kcond

2 ) of ∼1014.
CuL,Cu +

Free Cu2+ concentrations were low (pCu 14.4–15.1), and total and size fractionated net
primary productivity (NPP ; g C L−1 d−1

V μ ) were negatively correlated with inorganic Cu
concentrations ([Cu′]). We suggest this is due to greater Cu′ drawdown by faster growing
phytoplankton populations. Using the relationship between [Cu′] drawdown and NPPV,
we calculated a regional photosynthetic Cu:C drawdown export ratio between 1.5 and
15 μmol Cu mol C−1, and a mixed layer residence time (2.5–8 years) that is similar
to other independent estimates (2–12 years). Total particulate Cu uptake rates were
between 22 and 125 times faster than estimates of Cu export; this is possibly mediated
by rapid cellular Cu uptake and efflux by phytoplankton and bacteria or the effects of
grazers and bacterial remineralization on dissolved Cu. These results provide a more
detailed understanding of the interactions between Cu speciation and microorganisms
in seawater, and suggest that marine phytoplankton modify Cu speciation in the open
ocean.
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INTRODUCTION

While it is well established that iron (Fe) availability limits
primary productivity in up to 40% of the global surface oceans
(Moore et al., 2004; Boyd et al., 2007), other trace elements
may exert influence over phytoplankton community composition
and growth. Copper (Cu) is unique because it is a required
micronutrient (e.g., Palenik and Morel, 1991; Chadd et al., 1996;
Maldonado et al., 2006; Peers and Price, 2006), but it can also be
toxic to marine phytoplankton at relatively low concentrations
(Sunda and Huntsman, 1983; Brand et al., 1986; Moffett et al.,
1997; Mann et al., 2002; Levy et al., 2007). Indeed, limited field
evidence suggests that Cu may be causing toxicity to coastal
phytoplankton communities (Moffett et al., 1997; Jordi et al.,
2012). Despite the potential nutritional and toxic effects of
Cu in marine phytoplankton, little is known about how Cu is
influencing planktonic rate processes in unpolluted, open ocean
environments.

Both the concentration and speciation of a metal will
determine whether it is limiting or toxic to marine phytoplankton
(Hudson, 1998; Sunda, 2012). Copper is bound to a suite of strong
and weak organic ligands in seawater, resulting in >99.9% of the
dissolved Cu being complexed, and free Cu2+ concentrations of
10−13.5 to 10−16.3 M (van den Berg, 1984; Coale and Bruland,
1988; Moffett and Dupont, 2007; Buck et al., 2010; Bundy et al.,
2013; Jacquot et al., 2013; Thompson et al., 2014; Heller and
Croot, 2015; Jacquot and Moffett, 2015). Free Cu2+ makes up
∼4% of the total inorganic Cu (Cu′) pool, with the remainder
dominated by CuCO3 and CuOH− (Turner et al., 1981). Early
physiological work proposed that Cu′, but not organically
complexed Cu, was the substrate for transporters in marine
phytoplankton when [Cu′] was high (Sunda and Guillard, 1976;
Anderson and Morel, 1978; Sunda and Huntsman, 1995). The
total dissolved Cu concentration in the surface ocean (0.2–3 nM)
is similar to [Cu′] that causes toxicity in many phytoplankton
species (>0.1 nM; Brand et al., 1986). Thus, it was proposed
that the Cu-binding ligands found in seawater are produced by
Cu-sensitive prokaryotes to complex Cu′, thereby detoxifying
it (Moffett and Brand, 1996; Moffett et al., 1997; Croot et al.,
2000; Gordon et al., 2000; Mann et al., 2002; Wiramanaden
et al., 2008). However, some organically complexed Cu appears
to be bioavailable to eukaryotic marine phytoplankton (Hudson,
1998; Quigg et al., 2006; Guo et al., 2010; Semeniuk et al., 2015;
Walsh et al., 2015). Thus, organic ligands may play a variety of
roles in mediating Cu availability to different marine plankton
groups.

The buffering of low [Cu′] by strong organic ligands may have
negative effects on eukaryotic marine phytoplankton growth.
Indeed, some Fe-limited phytoplankton have higher metabolic
dependencies on Cu (Peers et al., 2005; Annett et al., 2008;
Semeniuk et al., 2009; Guo et al., 2012; Biswas et al., 2013). This
may be due to upregulation of the Cu-containing photosynthetic
electron shuttle plastocyanin and the multiple-Cu containing
oxidase component of a high affinity Fe transport system in
diatoms (Maldonado et al., 2006; Peers and Price, 2006; Kustka
et al., 2007). Recent surveys of Cu speciation in surface waters
(e.g., Moffett and Dupont, 2007; Buck et al., 2010; Bundy et al.,

2013; Jacquot et al., 2013; Thompson et al., 2014; Jacquot and
Moffett, 2015) have reported [Cu′] low enough (<10−14 M) to
co-limit the growth of Fe-limited phytoplankton communities
(Peers et al., 2005; Annett et al., 2008; Guo et al., 2012). Only
a handful of large volume incubation process studies have
examined the influence of Cu on Fe-limited phytoplankton, and
conflicting evidence for and against Fe-Cu co-limitation has
emerged (Coale, 1991; Peers et al., 2005; Wells et al., 2005; Kustka
et al., 2015; Semeniuk et al., 2016). Additional work evaluating
in situ metal bioavailability and the link between metabolic Cu
and Fe requirements of natural phytoplankton assemblages is
warranted.

There has been a recent surge of metal speciation data
in seawater in concert with the international GEOTRACES
program. However, few studies have examined how in situ
trace metal speciation influences either metal bioavailability to
marine phytoplankton and bacteria, or planktonic rate processes
in surface oceans. Few tools are available to examine in situ
cellular metal concentrations and accumulation rates, and each
has unique advantages and disadvantages. Measurements of
total bulk particulate metals provide precise particulate metal
concentration data, but these include unknown lithogenic
contributions that must be corrected (reviewed by Lam et al.,
2015). Metal quotas of single cells have been reported using
synchrotron X-ray fluorescence, but this method is resource
and technically intensive and is currently undertaken by only
one group (e.g., Twining et al., 2003). Commercially available
radioisotopes and enriched stable isotopes can be used to
track cellular metal assimilation (e.g., Maldonado and Price,
1999; Dupont et al., 2010; Cox et al., 2014). Although small
isotope additions are made, they are often higher than in situ
concentrations in order to overcome instrumental detection
limits. Thus, what controls in situ rates of trace metal uptake by
plankton inhabiting oceanic waters remains largely unknown.

Using the carrier free short-lived gamma emitting
radioisotope 67Cu (t1/2 = 2.58 days), we made the first
measurements of Cu assimilation in natural phytoplankton
assemblages without significantly altering in situ Cu chemistry
(Semeniuk et al., 2009, 2015). This is enabled by the relatively
high concentration of dissolved Cu in surface seawater compared
to other trace mineral nutrients (e.g., iron, <0.1 nM), and the
high specific activity of 67Cu. In the present study, we expand
on our early work by measuring Cu assimilation at many
stations and depths, which allows us to assess how well the
67Cu tracer assays compare with previous laboratory and field
studies. We use the tracer to determine how prokaryotic and
eukaryotic Cu assimilation co-varies with Cu concentration,
speciation, and a suite of biological and chemical parameters
along Line P, a coastal-open ocean transect that extends
from the British Columbia coast to the low-Fe surface waters
in the northeast subarctic Pacific Ocean. In addition to
contributing measurements of total dissolved Cu and Cu
speciation for surface waters in this region, this dataset provides
an opportunity to examine possible relationships between
Cu chemistry and planktonic rate processes across high and
low Fe-containing surface waters across a large geographical
region.
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FIGURE 1 | Stations sampled along the Line P transect in the northeast subarctic Pacific Ocean.

MATERIALS AND METHODS

Plastic Cleaning
All plastics were rigorously cleaned in Class 100 conditions
before the cruise. The polycarbonate bottles used for the Cu
uptake assays, Cu:C assimilation ratios, and primary productivity
measurements were cleaned for 1 week each with 3% Extran,
6 M HCl, and 1 M HNO3 and were rinsed thoroughly with
ultra-pure water (18 M� cm resistivity; Millipore) between each
cleaning step. Sample bottles for dissolved metals (250 mL low-
density polyethylene; LDPE) and Cu ligands (500 mL LDPE)
were cleaned according to GEOTRACES protocols (Cutter et al.,
2010).

Experimental Design and Execution
Net primary productivity, phytoplankton biomass, total dissolved
Cu concentrations, Cu speciation, Cu:C assimilation ratios, Cu
uptake rates, and a suite of other variables were surveyed at
multiple depths along the Line P transect (Tables 1–3; Figure 1).
The depths sampled were in the mixed layer and subsurface
chlorophyll maximum at each station, with light intensities
spanning an order of magnitude (Table 2; Figure 2). The depths
and stations sampled represent waters that may be influenced by
coastal processes (P3), macronutrient limited coastal (P4) and
oceanic (P12) waters, as well as Fe-limited oceanic waters (P16
and P26) (Boyd and Harrison, 1999; Whitney and Freeland, 1999;
Peña and Varela, 2007). The diverse light and nutrient regimes
in surface waters along Line P provide a range of physical and
chemical variation that may influence Cu nutrition in marine
phytoplankton and bacteria.

Water Collection and Station
Parameterization along Line P
Between August 17 and 26, 2011, surface waters were sampled on
board the C.C.G.S. John P. Tully (Cruise, 2011-27) at five stations
along the Line P transect (Figure 1). Low nitrate concentrations
at stations P3, P4, and P12, and high nitrate concentrations at

P16 and P26 confirmed that the first three stations were nitrate-
limited, while the latter two stations were likely in the HNLC
region (Table 2). A few hours before dawn on each sampling day,
water was pumped from between 7 and 40 m depth using a trace
metal clean (TMC) Teflon R© diaphragm pump and Teflon R© lined
tubing attached to a Kevlar R© wire (Johnson et al., 2005). Water
was pumped directly into a Class 100 laminar flow hood where
it was sampled. Around noon on each sampling day, profile data
were collected at each station as previously described (Semeniuk
et al., 2016).

Samples collected for Cu uptake rates, Cu:C assimilation
ratios, and net primary productivity were immediately placed in
on-deck incubators supplied with water continuously pumped
from 5 m depth until radiotracer additions could be made (<3
h). The sampled depths were inside and below the mixed layer,
and spanned a range of light intensities from 3 to 39% of
Io (Table 2). The in situ light intensities for each depth were
maintained (± 4%) using neutral density screening.

Biological and Chemical Sampling and
Analysis
Samples for total and size fractionated chl a concentrations,
macronutrient concentrations, maximum variable fluorescence
yield (Fv/Fm; using fluorescence induction/relaxation; FIRe
Satlantic), and total bacterial abundance (determined by flow
cytometry; Becton-Dickinson FACSCalibur) were collected
and analyzed as previously described (Semeniuk et al.,
2016). Cyanobacteria and picoeukaryotes were sampled
and enumerated by flow cytometry according to Taylor et al.
(2013).

Dissolved Cu Concentrations and
Speciation
Total dissolved Cu ([Cu]d) samples were collected and
analyzed by flow injection analysis and chemiluminescence
using UV-oxidized samples (as described by Semeniuk et al.,
2016). Dissolved Cu speciation samples were collected using
the same procedure as for total dissolved Cu samples,
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but the sample bottles were not acidified, and instead
they were immediately frozen and stored at −20◦C until
further analysis. The Cu speciation measurements—conditional
stability constant (logKcond

CuL,Cu2+), ligand concentration, and free
Cu2+ concentration—were determined via competitive ligand
exchange-adsorptive cathodic stripping voltammetry. Due to
restrictions on sample volume, a single analytical window was
employed in triplicate using 5 μM of the competing ligand,
salicylaldoxime (SA), which represents an average of strong and
some weaker Cu-binding ligands (L). This moderate analytical
window was chosen in order to detect both strong and weaker
Cu-binding ligands to ensure an accurate determination of Cu2+.
This window however, may have missed much of the weaker
ligand pool (e.g., Heller and Croot, 2015), but weaker ligands are
expected to have a small effect on the Cu2+ concentrations in
the open ocean and in general, Cu2+ is relatively insensitive to
the analytical window employed (Bruland et al., 2000), especially
in the low [Cu]d of unpolluted environments (where [L] >

[Cu]). Moreover, more recent analysis of samples collected along
Line P using multiple analytical windows revealed relatively low
weak ligand concentrations (1–5 nM; logKcond

CuL,Cu2+< 11) (Bundy,
unpub.). The titrations performed here were completed using 12
titration points and up to 40 nM added Cu in order to fully titrate
the ligands within the detection window. A detailed description
of the theory and methodology is provided in Bundy et al. (2013)
and Semeniuk et al. (2015).

Cu Uptake Rates, Cu:C Assimilation
Ratios, and Net Primary Productivity
Copper uptake rates and Cu:C assimilation ratios were measured
using the gamma emitting radioisotope 67Cu (half-life = 62
h; provided by TRIUMF, Vancouver BC) and H14CO−

3 (Perkin
Elmer). The 37 MBq 67Cu “mother” stock was kept in 0.005 M
HCl, and diluted at least 2500-fold in the 250 mL assay bottles
to prevent significant pH changes. Approximately 10 mL of
seawater from each assay bottle were filtered through acid-
cleaned 0.22 μm porosity Acrodisc filters (Pall) using an acid-
cleaned rubberless syringe. The filtrate was collected in a TMC
15 mL falcon tube. Approximately 5 kBq of 67Cu from the
primary stock was added to 10 mL filtrate, and allowed to
complex with the excess strong Cu ligands for at least 2 h before
being added to the assay bottles. The Cu concentration was not
measured in the 67Cu mother stock that we took to sea. However,
the background Cu contamination in isotope stocks received by
our laboratory is routinely monitored via quadrapole ICP-MS,
and the Cu concentration of the mother stock is always <50 nM.
At most, 100 μL of the 67Cu mother stock (pre-equilibrated with
10 mL of filtered seawater) was added to 250 mL of collected
seawater, resulting in at most a 0.02 nM Cu addition. This
corresponds to a maximum possible increase in dissolved Cu of
1.4% in our assays. Given that the excess of Cu ligands along
the transect were between 6.3 and 17.4 nM, there would have
been sufficient excess Cu ligands to complex the 0.02 nM 67Cu
addition. Since the 67Cu tracer would have been completely
complexed by the excess in situ Cu ligands, and the total dissolved

Cu concentration changed negligibly, the Cu uptake rates and
Cu:C assimilation ratios are likely representative of in situ values.

A 2 h reaction time is commonly used for titrating Cu ligands
with CuSO4 for speciation analysis by electrochemical techniques
(Moffett and Dupont, 2007; Buck et al., 2010; Bundy et al., 2013;
Jacquot et al., 2013; Jacquot and Moffett, 2015), and so there
should have been adequate time for the excess strong ligands to
complex the tracer in our assays. However, we can also estimate
whether the excess concentration of Cu-binding ligands present
along Line P would have complexed the added 67Cu tracer in that
time. The forward reaction rate for complexation of trace metals
by organic ligands is described as kf = KOSk−w, where KOS is
the stability constant for formation of the outer electron-sphere
(M−1), and k−w is the rate constant for loss of the first water
molecule from the inner metal hydration sphere (s−1; Morel
et al., 1991; Hudson, 1998). The KOS value can vary between 0.3
and 8 M−1 in seawater, depending on the charges of the reacting
metal and ligand species (Morel et al., 1991), and so would have
a negligible effect on the overall rate constant. Instead, metal
chelation is often rate-limited by loss of the first water molecule
from the outer hydration sphere (Hudson, 1998). The water loss
rate constant for Cu2+ (∼109 s−1; Hudson, 1998) is high, and so
complex formation would be very rapid. In support of this, the
forward reaction rate constant measured for Cu2+ complexation
by unprotonated ethylenediamine tetraacetic acid (EDTA4−) in
0.1 M NaCl is also very fast (∼2×109 M−1 s−1; Hering and Morel,
1988). In seawater, the high concentration of Ca2+ competes with
Cu2+ for chelation, reducing both the strength of the Cu-ligand
complex and kf (Hering and Morel, 1988). The kf decreases as
dissociation of the Ca2+-ligand complex, and not k−w, becomes
the rate limiting step. This is particularly important for weaker
metal-binding ligands that are primarily complexed to Ca2+ in
seawater. For example, the stability constant for Cu2+ EDTA
decreases from 17.9 to ∼10.5 in seawater (Coale and Bruland,
1988; Zamzow et al., 1998; Croot et al., 1999). Similarly, the
forward reaction half-life for complexation of Cu2+ by EDTA
decreases from nearly instantaneous to 2 h in seawater (Hering
and Morel, 1988).

Using multiple analytical windows, both strong and weak Cu-
binding ligands have recently been detected in seawater (Buck
et al., 2010; Bundy et al., 2013; Heller and Croot, 2015). While
we are unaware of kinetic data for Cu complexation by strong
model organic ligands in seawater, forward reaction rates for
Fe complexation by strong organic ligands (0.1 to 2 × 106

M−1 s−1) are similar to k−w (8 × 106 s−1) (Hudson et al.,
1992; Witter et al., 2000). This is likely due to a much smaller
proportion of the stronger ligand pool being complexed to Ca2+.
Assuming the same applies for complexation of inorganic Cu
by the in situ strong organic ligands, then the 67Cu tracer
addition would have been complexed immediately by the in situ
strong ligands. However, if the in situ weak ligands behave like
EDTA—a relatively weak ligand compared to the strong in situ
ligands—then complexation of the 67Cu by them would have
been relatively slow and incomplete in our 2 h equilibration time.
There is little experimental data for Cu complexation kinetics by
natural organic matter in seawater, particularly for open ocean
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waters. Coale and Bruland (1988) reported that Cu complexation
by the strong ligand pool occurred within 5 min at an open
ocean station in the North Pacific. However, forward kinetic rate
constants have been determined for Cu binding by dissolved
organic matter in the Krka estuary (Croatia), and equilibration
times were slow (>2 h) (Louis et al., 2009). Given the similarity
between our study site and that for Coale and Bruland (1988),
we suggest the 67Cu tracer was rapidly complexed by strong Cu-
ligand pool, but it may not have been at equilibrium with the
weak Cu-ligand pool. Although the concentration of weak Cu-
binding ligands is low along Line P (1–5 nM; Bundy unpub.),
their role in mediating Cu bioavailability remains unknown.
Further work investigating Cu-ligand reaction kinetics of strong
and weak in situ ligands would greatly assist future speciation and
tracer research.

Previous work along Line P has demonstrated that short-
term uptake rates are significantly faster than long-term net
uptake rates due to either cellular efflux or remineralization of
particulate Cu by micrograzers (Semeniuk et al., 2009, 2015).
Thus, both short-term (2 h incubation) and long-term (24 h
incubation) uptake rates were measured. Two hours before dawn
on each sampling day, 250 mL of seawater were sampled from
either the cubitainers or the Teflon pumping system into TMC
250 mL polycarbonate bottles. Sampling occurred inside a Class
100 laminar flow hood. A 10 mL sub-sample was taken from each
assay bottle for the 67Cu and in situ ligand pre-complexation step
(see above), and the bottles were immediately placed inside the
on-deck incubators at the appropriate light levels. Once the 67Cu
tracer complexation was complete, the 250 mL assay bottles were
retrieved, and the 10 mL 67Cu tracer was added. For the 24 h Cu:C
assimilation ratio assays, 185 kBq of H14CO−

3 were also added to
each 250 mL bottle. The bottle lids were sealed with parafilm, and
the bottles were immediately returned to the on-deck incubators.
Duplicate bottles were prepared for both Cu uptake rate and
Cu:C assimilation ratio assays.

After the specified incubation time, the assay bottles were
retrieved from the incubators, and a 1 mL “initial” subsample
was taken from each bottle in order to determine the total
activity of 14C and/or 67Cu added to each bottle. To each
H14CO3− initial sample, 500 μL of 6 M NaOH was added to
prevent off gassing of 14CO2. The volume of each bottle was
recorded, and the seawater was gently vacuum-filtered onto
a series of 47 mm diameter 5, 1, and 0.22 μm polycarbonate
filters (AMD) separated by nylon drain discs (Millipore). Just
before the filters went dry, 20 mL of 1 mM diethylene triamine
pentaacetic acid (DTPA) in seawater adjusted to pH 8 were added
to the filters to remove any surface-associated tracer (Croot
et al., 2003). The filters were completely immersed in the 1 mM
DTPA wash for 10 min, the wash was then drained, and 20 mL
of filtered seawater (FSW) was applied to rinse away loosely
associated tracer. The filters were vacuumed dry to prevent
transfer of filtered cells between the filters and drain discs. Each
filter was carefully folded and placed inside a 7 mL borosilicate
scintillation vial. To each scintillation vial, 1 mL of FSW was
added, and the vials were vortexed for 30 s to remove filter-
bound cells. Filters collected from the 24 h Cu:C assimilation
ratio assays were immediately acidified with 100 μL of 6 M HCl

to degas inorganic 14C for 24 h before 1 mL of FSW was added.
The activity of 67Cu in each vial was determined using a sea-
going gamma counter (Semeniuk et al., 2009). Background 67Cu
counts were performed on analysis days and subtracted from
the sample counts. After 67Cu counting, sample vials containing
14C were filled with 50% ScintiSafe scintillation cocktail (Fisher)
and archived until further analysis in the laboratory once the
67Cu had decayed. Once the 67Cu had decayed (>8 half-
lives), the activity of 14C was determined with a Beckman
LS65005514 scintillation counter with an internal 14C quench
curve.

Filter blanks and kill controls were performed in triplicate
at P26 (10 m depth) in order to account for abiotic adsorption
of 67Cu to the polycarbonate filters and particles that was not
removed by the DTPA wash. For filter blanks, the 0.22 μm
filtered seawater was spiked for 2 min with pre-complexed 67Cu,
the seawater was filtered, and the filters were processed as in
the Cu uptake assays. Glutaraldehyde (2% final concentration)
was added to another set of triplicate bottles filled with
unfiltered seawater, and the cells were fixed for 2 h before pre-
complexed 67Cu was added. The killed bottles were incubated
for 2 h alongside the short-term Cu uptake rates, and similarly
processed. The average activity for the filter blanks + kill controls
(∼20% of the total filter activity on average; 15% from the filter,
and 5% from the cells) was subtracted from the assay filters for all
stations and depths.

The specific activity of 67Cu (disintegrations per minute;
DPM per mol) in the assays conducted along the transect was
calculated by dividing the activity measured in 1 mL of unfiltered
sample (DPM per mL) by the total dissolved Cu concentration
measured in UV-digested samples (mol per mL; see above). The
specific activity of 14C was calculated in the same way, but we
assumed a dissolved inorganic carbon concentration of 2.1 mM.
The total amount of Cu and/or C on each polycarbonate filter was
determined by dividing the activity on each filter (DPM per filter)
by the specific activity of the isotope (DPM per mol).

Volumetric Cu uptake rates (ρCuV; mol Cu L−1 h−1)
were determined by dividing mol of Cu on each filter by
the sample volume filtered and the incubation time. In order
to calculate carbon-normalized Cu uptake rates, we estimated
particulate organic carbon concentrations in each size fraction
using previously published conversion factors. For the 0.22–1 μm
size fraction, total bacterial abundance was converted to organic
carbon using 20 fg C bacterium−1 (Lee and Fuhrman, 1987). For
the 1–5 μm and >5 μm size fractions, [chl a] was converted to
organic carbon using 50 g C g chl a−1 (Booth et al., 1993). Total
ρCuB was determined by the sum of volumetric Cu uptake rates
divided by total particulate carbon concentrations derived from
the total bacterial abundance and total particulate [chl a].

Cu:C assimilation ratios (μmol Cu mol C−1) measured over
24 h were calculated for each size fraction by dividing the Cu
uptake rate by the C uptake rate measured for each size fraction.
Total particulate Cu:C assimilation ratios were calculated by
dividing the sum of size-fractionated particulate Cu by sum
of size-fractionated particulate C. The Cu:C assimilation ratios
for the 0.22–1 μm size fraction include both photosynthetic
and non-photosynthetic bacteria. Non-photosynthetic bacteria
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will acquire Cu without fixing 14C, and will then result in an
overestimate of the Cu:C assimilation ratios for the smallest size
fraction of phytoplankton.

The Cu:C assimilation ratios presented herein are not
equivalent to steady-state Cu quotas measured in previous
laboratory studies (Annett et al., 2008; Guo et al., 2012). Previous
laboratory studies acclimated phytoplankton to 24 h light. In
contrast, our field Cu:C assimilation ratio assays were performed
for 24 h under a day-night cycle. During the night hours, Cu
uptake may have taken place while fixation of 14C stopped and
respiration of previously fixed 14C likely occurred. Freshly fixed
organic carbon can be quickly metabolized after a few hours
(Halsey et al., 2011). Thus, the Cu:C assimilation ratios measured
in phytoplankton communities sampled along Line P may be
higher than those determined in laboratory studies.

Net primary productivity (NPP) along the transect was
determined using H14CO−

3 . Just before dawn on each sampling
day, four 60 mL TMC polycarbonate bottles were rinsed and filled
with sample water and spiked with 185 kBq of H14CO−

3 . A 0.5 mL
subsample was taken from each bottle in order to determine the
total activity of 14C added, and 0.5 mL of 6 M NaOH was added
to prevent degassing of 14CO2. One bottle was immediately
wrapped in aluminum foil and placed in an opaque black plastic
bag as a “dark” bottle to account for non-photosynthetic carbon
fixation and non-specific 14C binding. Bottles were incubated at
in situ light and temperature for 24 h in the on-deck incubators.
After the incubation, the volume of each bottle was recorded and
the contents were gently filtered onto 25 mm GFF filters. The
filters were then placed into 7 mL scintillation vials, and 100 μL
of 6 M HCl was added to degas inorganic 14C for 24 h. The filters
were then immersed in scintillation cocktail and archived until
they could be analyzed in the laboratory.

RESULTS

Depth Profiles along Line P
Mixed layer seawater density was highest at P26 (24.50 kg m−3),
decreased along the transect toward P4 (23.54 kg m−3), and
increased slightly at P3 (23.70 kg m−3) (Figure 2). Mixed layer
depths ranged two-fold (15–31 m), and were deepest farthest
offshore (P16 and P26) (Table 1). Light attenuation was greatest
at P3 (light attenuation coefficient, kD = 0.211 m−1), and so
the euphotic zone depth (Zeu) was shallowest at this station (22
m) (Tables 1, 2). At stations P4 through P26, light attenuation
(light attenuation coefficient, kD = 0.093–0.096) and the euphotic
depths (48–49 m) were similar (Tables 1, 2).

Mixed layer nitrate concentrations were below detection
(0.2 μM; Barwell-Clarke and Whitney, 1996) at P3, P4, and
P12 (Table 2 and Figure 2). However, they were elevated at
P16 (5.20 μM) and P26 (11.2 μM), which is characteristic of
HNLC waters. Phosphate and silicic acid concentrations were
not limiting across the transect. At P3, a broad fluorescence
peak was present from 5 to 30 m depth (Figure 2). Dissolved
oxygen (DO) was elevated in the mixed layer at this station
(293–298 μM), showed a large decrease between 12 and 17 m
(280 μM), and increased again below the thermocline (300 μM)
(Figure 2). Subsurface chlorophyll maxima (SCM) were most

pronounced below the thermocline at P4 (∼45 m) and P12 (∼35
m), and corresponded with increased nitrate concentrations,
increased DO, and low light levels (<5% of the incident
irradiation; Io) (Figure 2). Smaller SCM were present at P16 and
P26 and corresponded to subsurface DO maxima. The discrete
depths sampled across the transect corresponded to a range of
irradiances between 3 and 39% of Io (Table 2).

Copper Concentrations and Speciation
Total dissolved Cu concentrations ranged between 1.5 and
2.8 nM along the transect (Table 3). Dissolved Cu was highest
near the coast at P3 (2.4–2.8 nM). Mixed layer [Cu]d decreased
along the transect toward P20 (1.7 nM), and increased at P26
(2.1 nM). Dissolved ligand concentrations were highest at P3
(14.7 and 17.4 nM at 7 and 12 m depth, respectively). Ligands
were between three and seven-fold in excess of [Cu]d, and with
high logKcond

CuL,Cu2+ (13.7–14.5). The average [L]:[Cu]d ratio was
4.8 ± 1.2 (n = 12) (Table 3). The [L]:[Cu]d ratios at P3
were generally higher at both depths (6.1–6.2) compared to the
remaining 10 depths sampled along the transect (4.6 ± 1.1; n =
10) (Table 3). Ligand concentrations were positively correlated
with [Cu]d (slope = 5.9; r2 = 0.44, p = 0.0184).

The excess strong [L] resulted in inorganic Cu concentrations
([Cu′]) between 19 and 94 fM and coincident pCu values
(−log[Cu2+]) ranging between 15.1 and 14.4 along the transect
(Table 3). At each station, [Cu′] tended to be lowest at the
shallowest depth and increase with depth. Notably, the lowest
[Cu′] measured along the transect corresponded with the highest
NPPV at P26 (10 m depth). The [Cu]d, [L], and [Cu′] at
the shallowest depth sampled at each station were compared
with surface salinities along the transect sampled at 5 m depth
(Figure 3). [Cu]d and [L] were highest at the lowest salinities near
the coast, and decreased offshore to P16, and increased again at
P26. [Cu′] was more variable, and did not show an obvious trend
with salinity.

Biomass and Productivity
Total [chl a] varied more than 20-fold along Line P varied
between 0.04 and 0.96 μg chl a L−1, with highest concentrations
at P3, and lowest in the mixed layer at P4 (Table 4). The 0.22–1,
1–5, and >5 μm size fractions made up 7 ± 8, 48 ± 15, and 45 ±
12% of the total [chl a] across the transect, respectively (Table 5).
The 0.22–1 μm size fraction made up <10% of the total [chl a] at
all sampling depths except for 12 m at P3 (31%). Cyanobacteria
and picoeukaryote abundance varied between 0.77–200 × 106

cells L−1, and 0.55–16.3 × 106 cells L−1, respectively (Table 4).
They were most abundant at P3 and tended to be more prevalent
at deeper depths at all stations (e.g., P4, P12, and P16). The
maximum fluorescence yield (Fv/Fm) was highest near the coast
(0.23–0.64), lowest at P16 (0.19–0.29), and decreased toward the
HNLC waters (Table 4).

NPPV ranged between 11 and 110 μg C L−1 d−1. It was highest
in the mixed layer at P26 (110 μg C L−1 d−1), and co-occurred
with a higher Fv/Fm (0.29) compared to the mixed layer at P16
(41 μg C L−1 d−1; Fv/Fm = 0.19) (Table 4). These rates are within
the range previously reported for the upper 40 m along Line P in
the summer (10–100 μg C L−1 d−1) (Boyd and Harrison, 1999).
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FIGURE 2 | Depth profiles of sigma-t (kg m−3), fluorescence (unitless), dissolved oxygen (μM), dissolved nitrate (μM), phosphate (μM), and silicic acid
(μM) in surface waters (< 50 m) of stations sampled along the Line P transect. Only data collected during the same cast were plotted.

NPPB ranged between 74 and 583 μg C μg chl a−1 d−1, with the
fastest rate (583 μg C μg chl a−1 d−1) in the mixed layer at P4.

Total bacterial abundance between stations P4 and P26 varied
between 0.82 and 3.66 × 109 cells L−1, and was an order of
magnitude higher at P3 (32.0–32.2 × 109 cells L−1) (Table 4).
Volumetric and cell-normalized rates of bacterial productivity
varied between 0.98 and 4.78 μg C L−1 d−1, and 0.41 and
4.85 fg C cell−1 d−1, respectively. Both volumetric and carbon-
normalized rates of bacterial productivity were fastest at P16 and
P26. Bacterial abundance and productivity were within the range
previously reported for summer months along Line P (0.80–1.35
× 109 cells L−1 and 2–6 μg C L−1 d−1, respectively) (Sherry et al.,
1999).

Correlations of Cu Assimilation, Biomass,
Productivity, and Cu Speciation
The concomitant sampling of total dissolved Cu, Cu speciation,
and various measures of biological biomass and productivity
allow us to determine how Cu might influence microorganisms
along Line P. There were a number of statistically significant

TABLE 1 | Locations, sampling dates, seafloor depths, mixed layer depths,
and kD of the stations sampled along Line P in August, 2011.

Station Latitude Longitude Sampling Seafloor MLD kD

(N) (W) date depth (m) (m) (m−1)

P3 48◦37.50′ 126◦20.02′ Aug 17, 2011 815 15 0.211

P4 48◦39.00′ 126◦40.00′ Aug 18, 2011 1320 23 0.093

P12 48◦58.91′ 130◦39.91′ Aug 21, 2011 3230 15 0.093

P16 49◦17.00′ 134◦40.00′ Aug 22–23, 2011 3620 31 0.093

P26 49◦59.95′ 144◦59.99′ Aug 26, 2011 4225 29 0.096

correlations along the transect (for p-values, see Table 6).
Total NPPV, as well as 1–5 μm and >5 μm NPPV (from the
size-fractionated Cu:C assimilation ratio assays) were negatively
correlated with [Cu′] (r2 = −0.63 to −0.86) and positively
correlated with logKcond

CuL,Cu2+ (r2 = 0.63–0.74) (Figures 4A,C).
These correlations are stronger than those between NPPV and
nitrate (r2 = 0.54), phosphate (r2 = 0.56), or silicic acid (r2 =
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TABLE 2 | Light intensities, euphotic zone depth (Zeu), and macronutrient concentrations (μM) at each sampling depth along Line P.

Station Zeu (m) Sampling depth (m) % Surface irradiance (Io)a (%) % Io of incubationb(%) [NO−
3 ] [PO3−

4 ] [Si(OH)4]

P3 22 7 22 26 BDLc 0.29 10.53

12 10 11 BDL 0.27 10.15

P4 49 10 39 42 BDL 0.29 2.25

20 16 18 BDL 0.29 2.30

40 3 5 0.60 0.57 5.90

P12 49 10 39 42 BDL 0.38 6.70

20 16 18 0.20 0.40 6.30

40 3 5 5.30 0.76 11.10

P16 49 10 39 42 5.20 0.73 11.30

37 3 5 7.00 0.85 12.60

P26 48 10 38 42 11.20 1.09 15.80

35 4 5 13.10 1.24 NDd

Depths in bold are below the mixed layer.
a% Surface irradiance measured at each sampling depth.
b% Surface irradiance experienced by the Cu uptake and primary productivity incubations.
cBDL: below detection limit; detection limits for NO−

3 , PO3−
4 , and Si(OH)4 were 0.2, 0.02, and 0.5 μM, respectively (Barwell-Clarke and Whitney, 1996).

dND: not determined.

0.54) (Table 6). There were no significant correlations between
NPPB and either [Cu′] or logKcond

CuL,Cu2+ , with or without the
inclusion of the P4 outlier sampled at 10 m (Figures 4B,D). Total
chl a, as well as >5 μm chl a, were not strongly correlated
with NPPV (r2 = 0.41 and 0.51, respectively; Table 6), while
chl a in the 1–5 μm size fraction was not correlated with
NPPV (p > 0.05). This indicates that the correlations between
[Cu′], logKcond

CuL,Cu2+ , and NPPV may not have been solely driven
by changes in biomass. Ligand concentrations were positively
correlated with total particulate [chl a] (r2 = 0.39), >5 μm [chl
a] (r2 = 0.46), and bacterial abundance (r2 = 0.65; Table 6).

Cu:C Assimilation Ratios
The Cu:C assimilation ratios ranged between 0.4 and 80 μmol
Cu mol C−1 across the transect (Table 5). The average Cu:C
assimilation ratios were similar across the transect for all size
fractions (28 ± 20, 27 ± 16, 30 ± 21, and 27 ± 11 for the
0.22–1 μm, 1–5 μm, >5 μm, and total particulate size fractions,
respectively). The Cu:C assimilation ratios were not correlated
with [Cu]d, [Cu′], [L], or logKcond

CuL,Cu2+ .

Cu Uptake Rates
Total particulate ρCuST,C varied ∼9-fold, and ranged between
1.1 ± 0.1 and 10 ± 1 μmol Cu mol C−1 h−1. Size-fractionated
ρCuST,C were more variable, and varied up to 130-fold across
the size fractions (ranging from 0.7 ± 0.1–94 ± 13 μmol Cu mol
C−1 h−1). Average ρCuST,C were similar for the 1–5 μm (17 ±
24 μmol Cu mol C−1 h−1) and >5 μm (14 ± 16 μmol Cu mol
C−1 h−1) size fractions, and were slowest for the 0.22–1 μm size
fraction (1.6 ± 0.8 μmol Cu mol C−1 h−1). Average CuST,V along
the transect were similar for all size fractions (∼5 pmol Cu L−1

h−1) (Table 5).
Total particulate long-term volumetric uptake rates (ρCuLT,V)

varied 3.8-fold, and ranged between 33 ± 10 and 125 ± 40 pmol
Cu L−1 d−1. Similar to ρCuST,V, average ρCuLT,V were similar

TABLE 3 | Total dissolved Cu, ligand concentrations, conditional stability
constants, inorganic Cu concentration, and the dissolved [L]:[Cu]d ratio at
each sampling depth along Line P.

Station Sampling [L] log Kcond
CuL,Cu2+ [Cu]d pCu [Cu′] L:[Cu]d

depth (m) (nM) (nM) (-log[Cu2+]) (fM)

P3 7 14.7 13.9 2.4 14.6 66.7 6.1

12 17.4 13.7 2.8 14.4 94.0 6.2

P4 10 11.0 14.2 2.4 14.8 44.1 4.5

20 10.4 13.8 1.5 14.6 65.9 7.1

40 7.6 14.2 1.8 14.7 46.0 4.2

P12 10 10.2 14.3 2.2 14.9 30.4 4.7

20 8.8 14.3 2.2 14.7 43.6 4.0

40 11.0 14.0 1.9 14.7 53.0 5.7

P16 10 6.3 14.2 1.7 14.6 58.8 3.7

37 7.8 14.0 1.9 14.6 60.0 4.0

P26 10 10.2 14.5 2.1 15.1 18.7 4.9

35 7.0 14.5 2.2 14.9 33.1 3.1

Depths in bold are below the mixed layer.

for the 0.22–1 μm (23 ± 17 pmol Cu L−1 d−1), 1–5 μm (31 ±
13 pmol Cu L−1 d−1), and >5 μm (33 ± 17 pmol Cu L−1 d−1)
size fractions, and varied 187-fold among the size fractions (0.3 ±
0.1 to 125 ±20 pmol Cu L−1 d−1). Unlike ρCuST,V the ρCuLT,V
for the 0.22–1 μm size fraction were not slower than the other
size fractions. Variation of carbon-normalized Cu uptake rates
(ρCuLT,C) in the total (five-fold), 1–5 μm (16-fold), and >5 μm
(21-fold) size fractions was similar to variation in ρCuST,C.
However, ρCuLT,C in the 0.22–1 μm size fraction was more
variable (155-fold) than ρCuST,C (five-fold). While there were
no significant correlations between ρCuLT,C and any measure of
Cu speciation along the transect for the eukaryotic size fractions,
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FIGURE 3 | Surface salinity, total dissolved Cu (nM), Cu-binding ligands (nM), and inorganic Cu (fM) concentrations along the Line P transect. Salinity
was sampled at 5 m using the ship’s internal seawater pumping system, while the Cu concentration and speciation samples were from the shallowest depths sampled
along the transect (7–10 m; Table 2).

ρCuLT,C in the 0.22–1 μm size fraction was positively correlated
with logKcond

CuL,Cu2+ (r2 = 0.64, p = 0.0055) (Table 6).
Short-term Cu uptake rates are in excess of long-term

uptake rates due to either cellular efflux or remineralization
by micrograzers (Semeniuk et al., 2015). The ratio of short-
term:long-term uptake ratios (ST:LT) was calculated by first
converting the hourly short-term rates (pmol Cu L−1 h−1) into
daily rates (pmol Cu L−1 d−1). Average ρCuST,V for all size
fractions was ∼11-times faster than ρCuLT,V, and the total ST:LT
ratios ranged between 2.7 and 11.2 across the transect (Table 5).
The ST:LT ratios were more variable for the 0.22–1 μm size
fraction (1.8–187) than the 1–5 or >5 μm size fractions (1.9–
10.5). The two highest ST:LT values in the 0.22–1 μm size fraction
(52 and 187) were outliers at P16. Without these outliers, the
average ST:LT ratios for all size fractions were consistently lower
at P26 (2.7 ± 1.0) and P16 (3.3 ± 1.1; without the two outliers)
than P4 (6.9 ± 9.2) or P12 (6.5 ± 2.0).

DISCUSSION

Distribution of Total Dissolved Cu in Line P
Surface Waters
We present some of the first measurements of dissolved Cu
in the northeast subarctic Pacific Ocean. Total dissolved Cu

varied 1.9-fold across the transect (1.5–2.8 nM). These values are
similar to surface water [Cu]d previously measured along Line
P (1.2–3.5 nM; Martin et al., 1989; Semeniuk et al., 2009), in the
North Pacific (0.6–3.5 nmol kg−1) (Boyle et al., 1977; Coale and
Bruland, 1988), northwest subarctic Pacific and Bering Sea (1.2–
2 nM) (Moffett and Dupont, 2007), and in Washington coastal
waters south of the Line P transect (1.86–5.25 nmol kg−1) (Jones
and Murray, 1984).

Dissolved Cu was highest in less saline waters near the coast
(salinity = 31.5–32) and decreased offshore. The elevated [Cu]d
at P3 (7 and 12 m depth) and at 10 m depth at P4 may be
due to their closer proximity to terrestrial and shelf sources
of Cu. Upwelling begins at these stations by March, due to
Ekman pumping as the California and Alaska currents bifurcate
along the British Columbia coast (Thomson, 1981; Foreman
et al., 2011). Intermediate waters (250–500 m) off the coast of
Washington are enriched in Cu (2–3 nM) relative to surface
waters (Jones and Murray, 1984). Upwelling of these waters
could account for the observed enrichment of [Cu]d at P3
and P4.

Surface water [Cu]d at P26 (2.1–2.2 nM) was higher than
previously measured at this station (1.44–1.54 nmol kg−1)
(Martin et al., 1989). Total dissolved Cu at P26 was also higher
than [Cu]d at P16 (1.7–1.9 nM). Dissolved Fe in the mixed
layer was also significantly higher at P26 (0.13–0.21 nM) relative
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TABLE 4 | Biomass and rate parameters measured at each sampling depth along Line P.

Station Depth Chl a Fv/ Bacteriaa Cyanobacteria Picoeukaryotes NPPV NPPB BPV BPB

(m) (μg L−1) Fm (109 cells L−1) (106 cells L−1) (106 cells L−1) (μg C L−1 d−1) (μg C μg chl a−1 d−1) (μg C L−1 d−1) (fg C cell−1 d−1)

P3 7 0.898 NDb 32.0 200 16.3 ND ND ND ND

12 0.958 ND 32.2 177 13.0 ND ND ND ND

P4 10 0.044 0.64 1.08 1.73 0.55 25.2 583 1.88 1.74

20 0.138 0.51 1.08 1.42 1.61 10.8 74 1.52 1.41

40 0.549 0.23 2.11 38 5.08 46.8 85 3.96 1.87

P12 10 0.428 0.38 2.30 0.82 3.10 45.6 108 3.04 1.32

20 0.202 0.29 3.66 1.23 3.86 40.8 202 1.49 0.41

40 0.127 0.24 2.06 ND ND 32.4 253 0.98 0.48

P16 10 0.262 0.19 1.25 0.77 2.63 40.8 157 2.33 1.86

37 0.241 0.29 0.99 4.70 4.82 34.8 143 4.78 4.85

P26 10 0.418 0.29 1.10 4.79 7.97 110.4 264 1.97 1.80

35 0.440 0.24 0.82 2.45 11.7 75.6 173 4.67 5.73

Depths in bold are below the mixed layer. Volumetric (NPPV ) and chl a-normalized (NPPB) net primary productivity was measured over 24 h. Volumetric (BPV ) and cell-normalized (BPB)
bacterial productivity was measured over 3–4 h.
aTotal bacterial abundance (heterotrophic and autotrophic bacteria).
bND: not determined.

to P16 (0.03–0.07 nM) (Cullen, unpub. data). Recent dissolved
lead (Pb) isotope data along Line P indicate that the source
of dissolved Pb in the upper 75 m at P26 is from Asian dust
sources (McAlister, 2015). At stations P4 through P20, North
American dust sources were the dominant sources of metals
to surface waters (McAlister, 2015). Thus, the higher Fe and
Cu concentrations at P26 compared to P16 could be due
to atmospheric dust deposition from Asia. It is also possible
that transport of coastal waters via mesoscale eddies (Johnson
et al., 2005) or isopycnal transport from continental margins
(Lam et al., 2006) carried Cu and Fe to the P26 mixed layer.
However, satellite altimetry anomalies demonstrate that there
was not an eddy at P26 during the time of sampling (Figure 5).
Though it is difficult to distinguish between atmospheric and
isopycnal transport of Cu to P26 with our data, sporadic
atmospheric dust deposition events have been previously
linked to primary productivity increases at P26 (Bishop et al.,
2002; Hamme et al., 2010). Interestingly, [chl a], Fv/Fm
(a physiological indicator for Fe-limitation), picoeukaryote
abundance, and NPPV were also elevated at P26 compared
to P16. These data suggest that a recent atmospheric dust
deposition event may have occurred at P26 shortly before our
arrival.

Cu Speciation in Surface Waters along
Line P
Strong Cu binding ligands were present across the transect at all
sampling depths, and were always in excess of the total dissolved
Cu concentrations, resulting in sparingly low inorganic Cu
concentrations. Compared to previous studies (Buck et al., 2010;
Bundy et al., 2013), a single analytical window was employed
(5 μM SA) along with higher Cu additions, in order to detect a
wider range of ligands. This method was used to achieve the most
accurate estimate of Cu2+ while using a single titration window.
The ligand concentration range (6.3–17.4 nM) and strength

(logKcond
CuL,Cu2+ = 13.7–14.5) represent both stronger and weaker

ligands. Thus, the concentrations reported here are higher than
those reported for just the strong ligand class by other groups,
using a different analytical window (2–4 nM; e.g., Jacquot et al.,
2013). Although this study used a different analytical window
than a study in a similar region (Moffett and Dupont, 2007),
the calculations of Cu2+ were very similar. This is likely because
Cu2+ determinations have been found to be largely independent
of analytical window, within a relatively wide range (Bruland
et al., 2000). The ligand strengths (logKcond

CuL,Cu2+) are similar to
those previously reported for the northwest Pacific Ocean and
Bering Sea (13.5–14; Moffett and Dupont, 2007), the Southern
Ocean (14–16.4; Buck et al., 2010; Bundy et al., 2013), the eastern
tropical south Pacific Ocean (13.5–14.5; Jacquot et al., 2013),
and the north Atlantic Ocean (12.9–14.2; Jacquot and Moffett,
2015).

Although the provenance and structure of the strong
Cu-binding ligands in the open ocean is unknown,
there are a number of possible sources and candidate
compounds. Synechococcus and the heterotrophic bacterium
Vibrio alginolyticus produce strong Cu-binding ligands
(logKcond

CuL,Cu2+ = 13) when experiencing Cu-toxicity (Moffett and
Brand, 1996; Gordon et al., 2000). The concentration of these
ligands is normally in excess (0–50%) of the total dissolved Cu in
the growth medium. The significant positive correlation between
total bacterial cell densities and [L] (r2 = 0.65, p = 0.0016)
suggests that prokaryotes may be a source of strong Cu ligands
along Line P. Since [L] was not correlated with cyanobacteria
abundance, heterotrophic bacteria may produce the majority of
these strong Cu binding ligands.

Similar to [Cu]d, [L] was highest near the fresher coastal
surface waters and decreased toward the open ocean. The higher
[L]:[Cu]d ratio at P3 compared to the average ratio across the
transect suggests that there may be an additional source of strong
Cu binding ligands along the shelf. Ligands in marine sediment
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TABLE 5 | Size-fractionated Cu:C assimilation ratios (24 h), short-term Cu uptake rates (2 h), long-term Cu uptake rates (24 h), and the
short-term:long-term uptake rate ratio for each sampling depth along Line P in August 2011.

Station Depth Size Chl a Cu:C assimilation ratio ρCuST,V ρCuST,C ρCuLT,V ρCuLT,C ST:LT

(m) (μm) (μg L−1) (μmol Cu mol C−1) (pmol Cu L−1 h−1) (μmol Cu mol C−1 h−1) (pmol Cu L−1 d−1) (μmol Cu mol C−1 d−1) ratio

P3 7 0.22–1 0.08 7.7±1.2 0.7±0.1

1–5 0.48 3.3±0.8 5.3±1.2

>5 0.33 4.1±0.1 1.9±0.02

Total 0.90 15 ± 1.5 1.1 ± 0.1

12 0.22–1 0.30 12±0.9 1.1±0.1

1–5 0.15 6.7±0.6 3.4±0.3

>5 0.51 6.5±0.3 4.7±0.2

Total 0.96 25 ± 1.7 1.8 ± 0.1

P4 10 0.22–1 0.004 69±23 6.3±0.9 3.5±0.5 23±1 13±0.1 6.6

1–5 0.02 53±6 7.8±1.1 94±13 36±13 433±32 5.2

>5 0.02 36±5 5.2±0.7 62±8 40±0.3 472±4 3.2

Total 0.044 46 ± 5 19 ± 3 10 ± 1 98 ± 4 50 ± 2 4.7

20 0.22–1 0.01 38±0.4 4.3±0.6 2.4±0.3 5±2 3±1 21.3

1–5 0.09 58±10 6.6±0.8 18±2 15±0.4 40±1 10.5

>5 0.04 28±0.4 4.4±0.4 26±2 13±2 78±15 8.1

Total 0.14 39 ± 3 15 ± 2 6.5 ± 0.7 33 ± 5 14 ± 2 11.2

40 0.22–1 0.04 43±4 5.6±0.8 1.6±0.2 41±6 12±2 3.3

1–5 0.30 28±2 6.1±0.1 4.9±10.1 38±2 31±2 3.8

>5 0.21 26±4 3.5±0.04 4.0±0.1 39±1 45±1 2.1

Total 0.55 31 ± 1 15 ± 1 2.7 ± 0.2 119 ± 9 21 ± 2 3.1

P12 10 0.22–1 0.01 27±4 8.4±0.9 2.2±0.2 30±2 8±0.4 6.8

1–5 0.16 15±3 8.1±1.9 12±3 18±2 28±3 10.5

>5 0.26 15±1 5.7±0.5 5.3±0.5 22±1 21±1 6.2

Total 0.43 19 ± 2 22 ± 3 4.0 ± 0.6 70 ± 4 13 ± 1 7.6

20 0.22–1 0.003 35±4 6.4±1.4 1.1±0.2 47±3 8±1 3.3

1–5 0.07 22±1 6.3±0.5 22±2 25±2 85±7 6.1

>5 0.13 18±2 5.0±0.2 9.2±0.3 16±1 30±2 7.4

Total 0.20 26 ± 1 18 ± 2 2.5 ± 0.3 87 ± 6 13 ± 1 4.9

40 0.22–1 0.003 22±1 3.6±1.5 1.1±0.4 17±2 5±0.4 5.2

1–5 0.07 12±1 4.8±0.2 16±1 14±1 49±4 8.0

>5 0.05 14±2 2.7±0.2 13±1 11±1 52±4 5.9

Total 0.13 16 ± 0.3 11 ± 2 2.8 ± 0.4 42 ± 3 11 ± 1 6.4

P16 10 0.22–1 0.01 0.4±0.1 2.5±0.02 1.2±0.01 0.3±0.1 0.3±0.1 187.4

1–5 0.14 18±1 6.1±0.9 10±2 30±2 51±4 4.9

>5 0.11 51±5 5.8±0.7 13±2 51±6 112±14 2.7

Total 0.26 24 ± 2 14 ± 1 4.6 ± 0.1 81 ± 9 26 ± 3 4.3

37 0.22–1 0.01 2±1 2.8±0.03 1.7±0.02 1.1±0.3 0.8±0.2 52.4

1–5 0.16 31±9 4.3±0.5 6.5±0.7 38±1 56±2 2.8

>5 0.08 80±23 4.9±0.4 15±1 61±24 183±71 1.9

Total 0.24 34 ± 4 12 ± 0.04 4.6 ± 0.02 100 ± 25 38 ± 10 2.9

(Continued)
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TABLE 5 | Continued

Station Depth Size Chl a Cu:C assimilation ratio ρCuST,V ρCuST,C ρCuLT,V ρCuLT,C ST:LT

(m) (μm) (μg L−1) (μmol Cu mol C−1) (pmol Cu L−1 h−1) (μmol Cu mol C−1 h−1) (pmol Cu L−1 d−1) (μmol Cu mol C−1 d−1) ratio

P26 10 0.22–1 0.02 18±5 2.4±0.02 1.3±0.01 31±4 17±2 1.8

1–5 0.16 12±6 4.2±0.1 6.4±0.1 46±3 69±4 2.2

>5 0.24 14±6 5.9±0.03 5.9±0.03 34±6 34±6 4.2

Total 0.42 14 ± 5 12 ± 0.01 3.6 ± 0.01 111 ± 4 32 ± 1 2.7

35 0.22–1 0.02 23±5 2.5±0.1 1.8±0.1 33±4 24±3 1.8

1–5 0.27 17±3 5.4±0.4 4.8±0.3 50±12 44±11 2.6

>5 0.15 22±5 7.8±0.6 13±1 43±4 69±7 4.4

Total 0.44 20 ± 4 15.7 ± 0.9 5.0 ± 0.3 125 ± 20 40 ± 6 3.0

Cu:C assimilation ratios were determined using 67Cu and 14C. Carbon-normalized uptake rates were measured using 67Cu, and dividing by particulate C concentrations derived from
bacterial abundance and chl a concentrations (see Section Materials and Methods for details). The ST:LT ratios were calculated by converting the hourly short-term Cu uptake rates
to daily dates, and then dividing by the long-term Cu uptake rates. Errors represent half the range for two replicate measurements, and values in bold are for the total particulate size
fraction.

porewaters, though weaker than in surface waters, can exceed
100 nM concentrations and can diffuse into the overlying bottom
water (Skrabal et al., 2000; Shank et al., 2004). As intermediate
waters pass over the shelf sediments during upwelling, they
may become enriched in weaker Cu binding ligands. The lowest
logKcond

CuL,Cu2+ measured along the transect were for P3 (12 m
depth), and suggests that shelf waters might be a source of
weaker Cu ligands in this region. Humic substances bind Cu
(logKcond

CuL,Cu2+ = 12; Whitby and van den Berg, 2015) and may be
a portion of the ligand pool in coastal stations. Humic substances
are electrochemically active, and their peaks were observed in the
coastal stations (data not shown). Inorganic Cu concentrations
varied five-fold (19–94 fM) with a corresponding pCu range
of 15.1–14.5. While the [Cu′] values are lower than previous
measurements in the North Pacific (0.8–2.4 pM; Coale and
Bruland, 1988), this is likely due to the lower analytical detection
window and different electrochemical method (ASV compared
to CSV in this study) used by Coale and Bruland (Bruland et al.,
2000; Buck et al., 2012).

Surface water [Cu′] tended to be lower at shallower depths
across the transect, and may imply biological utilization of Cu′
and export of particulate Cu below the mixed layer. The negative
correlations between NPPV and [Cu′] for all sampling depths
and stations for the 1–5 μm, >5 μm, and total particulate size
fractions (Figure 4; Table 6) support this. We did not observe
a similar correlation between chl a-normalized NPP (NPPB)
and [Cu′]. However, the C:chl a ratio of autotrophs can vary
more than six-fold at P26 (Booth et al., 1993; Peña and Varela,
2007), and by more than 10-fold between laboratory strains
(MacIntyre et al., 2002). This variability likely precluded any
significant correlation between NPP [Cu′]. Given laboratory and
field evidence for Cu′ uptake by phytoplankton (Sunda and
Guillard, 1976; Sunda and Huntsman, 1995; Semeniuk et al.,
2015; Walsh et al., 2015), we propose that Cu′ drawdown by the
phytoplankton communities along the transect is the most likely
explanation for this trend.

TABLE 6 | Statistically significant Pearson correlations of biomass,
productivity, Cu uptake, and chemical parameters measured along Line P
in August 2011.

Size fraction Variable 1 Variable 2 r2 p-value

Total [Chl a] NPPV 0.41 0.0460

[Chl a] [L] 0.39 0.0301

[Chl a] [Picoeukaryote] 0.76 0.0005

[Chl a] [Total Bacteria] 0.63 0.0021

NPPV [Cu′] 0.69 0.0010

NPPV logKcond
CuL,Cu2+ 0.74 0.0018

NPPV [NO−
3 ] 0.54 0.0027

NPPV [PO3−
4 ] 0.56 0.0123

NPPV [Si(OH)4] 0.54 0.0155

Fv/Fm [L] 0.43 0.0383

>5 μm [Chl a] NPPV 0.51 0.0195

[Chl a] [L] 0.46 0.0154

[Chl a] [Cu]d 0.42 0.0226

NPPV
* [Cu′] 0.86 0.0001

NPPV
* logKcond

CuL,Cu2+ 0.69 0.0029

1–5 μm NPPV
* [Cu′] 0.63 0.0062

NPPV
* logKcond

CuL,Cu2+ 0.63 0.0063

NPPV
* [NO−

3 ] 0.69 0.0028

NPPV
* [PO3−

4 ] 0.70 0.0026

NPPV
* [Si(OH)4] 0.61 0.0127

0.22–1 μm [Total Bacteria] [L] 0.65 0.0016

[Total Bacteria] [Cu]d 0.42 0.0216

BPV [L] 0.43 0.0417

rCuLT,C logKcond
CuL,Cu2+ 0.64 0.0055

Correlations with r2 > 0.6 are in bold, while those in italics have negative slopes.
*14C fixation data collected for each size fraction during the Cu:C assimilation ratio assays
was used to calculate volumetric net primary productivity rates for the 1–5 μm and >5 μm
size fractions (data not shown).
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FIGURE 4 | Total particulate NPPV (μg C L−1 d−1) (A,C), and NPPB (μg C μg chl a−1 d−1) (B,D) vs. [Cu′] (fM) and logKcond
CuL,Cu2+ measured along Line P.

NPPV was negatively correlated with [Cu′] (NPPV = −1.56[Cu′] + 117; r2 = 0.69, p = 0.001) and positively correlated with (NPPV = 107logKcond
CuL,Cu2+ − 1472; r2 =

0.74, p = 0.002). NPPB was not significantly correlated with [Cu′] or logKcond
CuL,Cu2+ whether the outlier at P4 was included (solid line) or excluded (dashed line).

Assessing the 67Cu Tracer Technique to
Measure Cellular Cu Accumulation
Few direct measurements of cellular Cu quotas—defined as the
intracellular ratio of Cu normalized to organic C (e.g., Sunda and
Huntsman, 1995)—have been made in marine phytoplankton
(Table 7). Similar to standard 24 h oceanographic incubation
assays (e.g., H18

2 O, 15NO−
3 incubations) the Cu:C assimilation

ratios presented here and in our previous study (Semeniuk et al.,
2009) assume that the phytoplankton physiology is minimally
perturbed over the course of the 24 h assay. Thus, while the
accumulation of cellular 67Cu and 14C may vary diurnally,
the ratio of the incorporation of each tracer after 24 h will
represent a pseudo-steady state Cu:C assimilation ratio, as long
as the added tracers are at equilibrium (see Section Cu Uptake
Rates, Cu:C Assimilation Ratios, and Net Primary Productivity).
Assuming similar environmental conditions, our ratios should be
comparable to other field and laboratory estimates of Cu:C quotas
of phytoplankton isolates and mixed assemblages.

The Cu:C assimilation ratios (∼30 μmol Cu mol C−1) across
the transect were ∼10-times higher (1–4 μmol Cu mol C−1)
than during our previous investigation (Semeniuk et al., 2009).
There were two major differences between the experimental set-
up in this study and our previous study. First, in our previous

study, the 67Cu tracer was allowed to equilibrate with the in
situ ligands for 30 min, while we chose a 2 h equilibration time
here. Stronger Cu-binding ligands will have a faster forward
reaction rate constant than weaker ligands due to competition
with calcium (see Section Cu Uptake Rates, Cu:C Assimilation
Ratios, and Net Primary Productivity). Thus, we could expect the
67Cu tracer to be rapidly bound to the strong ligand pool first, and
more of the 67Cu tracer would equilibrate with the weaker ligand
pool with a longer equilibration time. Since Cu bound to weaker
organic ligands is more bioavailable than Cu bound to stronger
ligands (Semeniuk et al., 2015; Walsh et al., 2015), the different
equilibration times used in the two studies could have changed
the relative bioavailability of the 67Cu tracer. Second, in our
previous study, water was collected in the mid to late afternoon,
spiked with 67Cu and 14C, and allowed to incubate for 24 h. In the
present study, we spiked the water with the isotopes just before
dawn. Thus, cells spent a greater proportion in the light near
the start of the incubation than in our previous study. A greater
amount of fixed 14C would have been available for respiration
during the night than in our previous study. Freshly fixed organic
14C can be respired within hours after initially fixed (Halsey et
al., 2011), and so this would result in higher Cu:C assimilation
ratios as observed in the present study. Both methodological
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FIGURE 5 | Satellite derived sea surface height anomalies (cm) along the Line P transect for August 8, 2011. Data were retrieved from the Colorado Centre
for Astrodynamics Research (CCAR) online database.

differences may have caused the higher Cu:C assimilation ratios
here. Average particulate Cu uptake rates were ∼5-times faster
than in our previous study, while the average total NPPV (∼45 μg
C L−1 d−1) were half as fast (∼85 μg C L−1 d−1; calculated using
data reported in Table 4 by Semeniuk et al., 2009). Thus, the
tracer equilibration time appears to play a more important role,
and future work should compare the effect of 67Cu equilibration
times with the in situ ligands on the measured Cu:C assimilation
ratios.

The size fractionated Cu:C assimilation ratios reported here
(0.4–80.2 μmol Cu mol C−1) are within the range of Cu quotas
reported in previous laboratory studies (0.04–156 μmol Cu
mol C−1) (Table 7). In addition, independent measurements
of cellular Cu quotas in natural phytoplankton communities
compare well with our Cu:C ratios (4–70 μmol Cu mol C−1)
(Twining et al., 2015). Average cellular Cu:C ratios were higher
in autotrophic flagellates and picoeukaryotes (∼30 μmol Cu
mol C−1) than in diatoms (∼4 μmol Cu mol C−1). Although
we did not determine the phytoplankton species composition
along the transect, diatoms rarely make up more than 25%
of the total [chl a] along Line P during the year (Steiner
et al., 2012), and would make up a small portion of the
particulate Cu:C. These data suggest that the Cu:C ratios
determined here using 67Cu and 14C approximate in situ
values. Further work comparing 67Cu and SXRF methods on
the same samples would greatly benefit the veracity of both
methods.

Geochemical estimates of the Cu:C ratios of exported material
can be derived from the slope of [Cu]d and [PO3−

4 ] measured
across the nutricline (�[Cu]d:�[PO3−

4 ]) in different ocean basins
(assuming a C:P ratio of 106). The range of these ratios (0.98–
24 μmol Cu mol C−1; Table 7) is within our observations
and those reported by Twining et al. (2015). However, the
average Cu:C ratio (∼5 μmol Cu mol C−1) determined using
�[Cu]d:�[PO3−

4 ] is smaller than the average size fractionated
Cu:C ratios reported here and for single cells reported by
Twining et al. (2015). Interestingly, the Cu:C ratios of single
diatom cells in the North Atlantic (∼4 μmol Cu mol C−1;
Twining et al., 2015) is similar to Cu:C ratios determined
using �[Cu]d:�[PO3−

4 ]. The �[Cu]d:�[PO3−
4 ] method only

takes into account Cu and C remineralized from exported
material (e.g., diatoms), and not organic material remineralized
in shallow waters (e.g., flagellates). Thus, diatoms may be
primarily responsible for removing Cu from the mixed layer. In
support of this, Löscher (1999) observed a positive correlation
between dissolved silicic acid and total [Cu]d in the Southern
Ocean.

Only two studies have reported steady-state Cu uptake rates
in phytoplankton grown in similar [Cu′] (Annett et al., 2008;
Guo et al., 2012). We calculated cell-specific Cu uptake rates
along the transect using the 1–5 μm size fraction ρCuLT,V and
picoeukaryote abundance, and compared them to steady state Cu
uptake rates measured in laboratory studies. The average cell-
normalized Cu uptake rates across the transect was 14 ± 19 amol
Cu cell−1 d−1, and ranged between 4 and 65 amol Cu cell−1

d−1. Removing the anomalously high value at P4 (10 m), the
average uptake rate decreases to 7 ± 2 amol Cu cell−1 d−1. The
average steady-state net cellular Cu uptake rates measured for
nine phytoplankton species with cell diameters between 1 and
5 μm was 1 ± 0.8 amol Cu cell−1 d−1, with a range of 0.03–
3.5 amol Cu cell−1 d−1 (Annett et al., 2008; Guo et al., 2012).
Thus, the estimates of cellular Cu uptake rates across the transect
are slightly faster than would be predicted using laboratory data.
The difference between the laboratory and field estimates could
be due to phytoplankton community composition structure and
experimental designs (e.g., steady state conditions and 24 h light
in the lab; diurnal cycles and varying light in the field). More
recent estimates of short-term cellular Cu uptake rates at P26 (∼8
amol Cu cell−1 d−1; Semeniuk et al., 2015) are within the range
reported here.

Environmental Controls of Biogenic Cu
along Line P
Some phytoplankton have higher Cu demands during Fe
limitation (Peers et al., 2005; Wells et al., 2005; Maldonado
et al., 2006; Annett et al., 2008; Guo et al., 2012; Biswas
et al., 2013). Oceanic phytoplankton strains have higher basal
metabolic Cu requirements compared to coastal strains, and
may reflect an increased reliance on Cu in waters with
chronically low Fe (Peers and Price, 2006; Annett et al., 2008).
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TABLE 7 | Particulate Cu:C ratios in natural phytoplankton communities
and laboratory strains grown under Cu-limiting and toxic conditions.

Study Cu:C ratio Method of Cu:C Study

Type (μmol Cu mol C−1) ratio determination

Laboratory 0.56–150 14C and GFAASa Sunda and
Huntsman, 1995

1.07–156 CHN Analyzer and
GFAASb

Chang and
Reinfelder, 2000

0.40–9.01 HR-ICP-MSc Ho et al., 2003

0.32–6.32 14C and 67Cud Annett et al., 2008

0.04–6.20 14C and 67Cud Guo et al., 2012

Field 4.6–5.1 GFAASe Sunda and
Huntsman, 1995

2.8–6.4 Nutricline
�[Cu]d:�[PO3−

4 ]f
Sunda and
Huntsman, 1995

0.98–23.6 Nutricline
�[Cu]d:�[PO3−

4 ]f
Annett et al., 2008

1.35–4.21 14C and 67Cug Semeniuk et al.,
2009

4–70 SXRFhand Microscopy Twining et al.,
2015

12–80 14C and 67Cug This studyh

aCells were filtered and rinsed with Gulf Stream seawater before undergoing
acid-digestion. Particulate Cu and C concentrations were determined by graphite
furnace atomic adsorption spectroscopy (GFAAS) and standard H14CO−

3 incubations,
respectively.
bCells were filtered and rinsed with experimental media. Particulate Cu and C
concentrations were determined by graphite furnace atomic adsorption spectroscopy
(GFAAS) and standard CHN analysis, respectively.
cCells were filtered and rinsed with chelexed synthetic ocean water before undergoing
acid-digestion. Cellular Cu and P were measured using a HR-ICP-MS, and Cu:C ratios
were calculated assuming a particulate C:P ratio of 106.
dCells were incubated with 67Cu and H14CO−

3 under steady state conditions and
continuous light for 24 h before harvested by filtration and washed with a 1 mM DTPA
wash.
eParticulate Cu and P reported by Martin et al. (1976) and Collier and Edmonds (1983)
were converted to Cu:C using a particulate C:P ratio of 106.
f Calculated from the linear slope of [PO3−

4 ] vs. [Cu]d in the nutricline, and assuming a
particulate C:P ratio of 106.
hCellular Cu concentrations were determined for single cells using Synchrotron X-
Ray Fluorescence (SXRF), and cellular C was calculated from cell volume and carbon
concentration conversion factors.
gSurface water samples were incubated at in situ light and temperature with 67Cu and
H14CO3 for 24 h before harvested by filtration and washed with a 1 mM DTPA wash.
hData for the 0.22–1 μm size fraction were omitted due to the presence of heterotrophic
bacteria in this fraction.

In previous work, Fe uptake and Cu assimilation rates were
positively correlated for large (>20 μm) phytoplankton along
the Line P transect, indicating that Fe and Cu metabolisms
may be linked in large cells (Semeniuk et al., 2009). Indeed,
a recent incubation study at station P26 confirmed that large
(>5 μm), Fe-limited phytoplankton increase Fe uptake using
their high-affinity Fe transport systems when provided with
1 nM CuSO4 (Semeniuk et al., 2016), suggesting that Fe
limitation may increase Cu demand along Line P, an HNLC
region.

The somewhat elevated Fe concentrations measured at P26,
possibly caused by an Fe-input event (see Section Distribution
of Total Dissolved Cu in Line P Surface Waters), provide an

opportunity to test whether natural Fe-enrichment can influence
the Cu physiology of marine phytoplankton. Compared to
P26 where the community was clearly Fe-limited, the Cu:C
assimilation ratios and ρCuLT,C were consistently higher at
P16 for both 1–5 μm and >5 μm size fractions. Furthermore,
the differences between Cu:C assimilation ratios and ρCuLT,C
measured at P16 and P26 were greater for the >5 μm (62–73%)
than the 1–5 μm (0–47%) size fraction. These data indicate that
there may be an interaction between Fe and Cu metabolism
in indigenous phytoplankton communities, and that larger
phytoplankton in HNLC regions may have a greater dependence
on Cu availability.

Previous laboratory studies have hypothesized that Cu′
concentrations determine Cu bioavailability to marine
phytoplankton (Sunda and Guillard, 1976; Anderson and Morel,
1978; Sunda and Huntsman, 1995). Thus, we hypothesized that
Cu:C assimilation ratios and Cu uptake rates might correlate
with [Cu]d and/or [Cu′]. There were no correlations between
ρCuST,C, ρCuLT,C, and Cu:C assimilation ratios with [Cu′]
for the 1–5 μm or >5 μm size fractions across the transect,
and so [Cu′] likely does not determine Cu uptake rates or
cellular quotas in natural marine phytoplankton communities.
Laboratory studies of isolated marine phytoplankton strains
have demonstrated that organically complexed Cu is bioavailable
(Hudson, 1998; Quigg et al., 2006; Annett et al., 2008; Guo
et al., 2010; Walsh et al., 2015). In situ Cu ligand complexes
were also bioavailable to marine phytoplankton surveyed at
P26 in 2008 (Semeniuk et al., 2015). Despite this, Cu uptake
rates or Cu:C assimilation ratios were not correlated with [Cu]d.
Since phytoplankton Cu quotas and steady-state Cu uptake
rates can vary by an order of magnitude among taxa grown
in identical Cu concentrations (Ho et al., 2003; Annett et al.,
2008; Guo et al., 2012), phytoplankton species composition,
Fe availability, or some other unknown factor, may primarily
determine particulate biogenic Cu concentrations in surface
waters.

Dissolved-Particulate Cu Cycling and Cu
Residence Times
Similar to our previous studies of Cu uptake rates at P26
(Semeniuk et al., 2009, 2015), short-term Cu uptake rates were
faster than long-term uptake rates for all size classes along the
Line P transect. Our previous work at station P26 demonstrated
that particulate Cu concentrations plateaued within 4–8 h of
adding the 67Cu tracer, and decreased up to 65% between 8 and
12 h later (Semeniuk et al., 2015). We hypothesized that cellular
efflux or remineralization by micrograzers may account for this.
Thus, Cu cycling between dissolved and particulate phases in
surface waters may be rapid compared to the export of particulate
Cu from surface waters.

Assuming that the relationship between total particulate
NPPV and [Cu′] is due to biological utilization across the
transect, we can calculate the net Cu:C drawdown ratio in surface
waters along Line P using this slope (1.56 μg C fmol Cu−1 d−1;
Figure 4), and a range of phytoplankton specific growth rates
reported for this region (0.2–1 d−1; Booth, 1988). The calculated
range, 1.5–7.7 μmol Cu mol C−1, assumes that only Cu′ is being
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incorporated into or onto particles. Recent estimates suggest that
between 0 and 90% of the Cu being acquired by indigenous
marine phytoplankton is organically complexed (Semeniuk et al.,
2015). If 50% of the dissolved Cu removed from surface waters
was organically complexed, then the net Cu:C drawdown ratio
would increase to 3–15 μmol Cu mol C−1. Timothy et al. (2013)
reports that 2–3 mmol C m−2 d−1 is exported to 200 m depth at
P26 during the late summer. This depth is below the permanent
halocline at ∼150 m along the transect, which limits the winter
mixed layer depth (Gargett, 1991). Using a middle value for the
net Cu:C drawdown ratio (∼10 μmol Cu mol C−1), we estimate
a Cu export to 200 m of 20–30 nmol Cu m−2 d−1. Integrated
over a 20 m summer mixed layer depth, this corresponds to an
estimated net loss of Cu from the mixed layer of 1–1.5 pmol
Cu L−1 d−1. Given the total dissolved surface Cu concentrations
across Line P varied by ∼2-fold (1.46–2.79 nM), we estimate the
residence time for Cu in the mixed layer (mixed layer [Cu]diss
÷ estimated net loss) along Line P between 2.5 and 8 years.
This is similar to other independent surface layer residence time
estimates in the tropical Atlantic Ocean (3–12 years; Helmers and
Schrems, 1995) and the North Pacific Ocean (∼9 years; Takano
et al., 2014). The surface residence time is much longer than other
bioactive metals, such as Fe (6–150 days; Bergquist and Boyle,
2006; Ellwood et al., 2014), or Co (∼100 days; Saito and Moffett,
2002), and reflects the higher total dissolved Cu concentrations
in surface waters (0.2–3 nM) compared to other bioactive metals
(0.01–0.2 nM).

The total particulate uptake rates measured using 67Cu (33–
125 pmol Cu L−1 d−1) are 22–125 times faster than our
estimates of Cu export (1–1.5 pmol Cu L−1 d−1). Assuming
that the source and loss terms in the surface mixed layer are at
steady state, this indicates that a Cu atom in the surface ocean
would exchange between dissolved and particulate phases 22–
125 times before being exported. Copper enters phytoplankton
through either a high- or low-affinity Cu transport system

(Guo et al., 2010, 2015). The HACuTS can be down- or up-
regulated, while the low-affinity transport system (LACuTS)
seems to be constitutively expressed (Guo et al., 2010). The
LACuTS is likely a non-specific divalent metal transporter (e.g.,
NRAMPs, ZIP) (Sunda and Huntsman, 1983; Guo et al., 2015).
Thus, if intracellular Cu increases above the cell’s metabolic
demand due to non-specific uptake, it will have to be effluxed or
detoxified intracellularly. Copper efflux is a common mechanism
in bacteria to prevent intracellular metal toxicity (Silver, 1996),
and ATP-powered heavy metal resistance pumps have been
identified in numerous α-, β-, and γ-proteobacteria (Ridge et al.,
2008). Copper efflux has also been documented in marine
prokaryotic and eukaryotic phytoplankton (Foster, 1977; Hall
et al., 1979; Croot et al., 2003; Quigg et al., 2006; Semeniuk
et al., 2015; Walsh et al., 2015), suggesting that Cu efflux might
be a common physiological mechanism of Cu homeostasis in
marine microorganisms. In addition, micrograzing and bacterial
remineralization might mediate fast exchange of Cu between
the dissolved and the particulate pools, as recently shown for
Ni and Zn (Twining et al., 2014). Therefore, fast biological Cu
uptake and efflux, as wells as efficient micrograzing and bacterial
remineralization of Cu in surface waters might have significant
impacts on the cycling of Cu in the sea.
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