71 research outputs found

    Non-diffusive dynamics in a colloidal glass: aging versus rejuvenation

    Full text link
    The microscopic dynamics of spontaneously aged and rejuvenated glassy Laponite is investigated through X-ray photon correlation spectroscopy. Two different behaviours of the intensity autocorrelation functions are observed depending on the history of the sample: stretched for spontaneously aged samples and samples rejuvenated from a Wigner glass and compressed, typical of anomalous dynamics, for samples rejuvenated from a DHOC glass. The relaxation time behaviour in the three cases indicates a non-diffusive dynamics of the particles. The present system offers therefore an overview of various dynamical behaviours previously observed individually in several systems and the possibility to pass from one to the other choosing ad hoc the time parameter.Comment: 5 pages, 4 figure

    Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels:the role of poly(acrylic acid)

    Full text link
    Hypothesis: The peculiar swelling behaviour of poly(N-isopropylacrylamide) (PNIPAM)-based responsive microgels provides the possibility to tune both softness and volume fraction with temperature, making these systems of great interest for technological applications and theoretical implications. Their intriguing phase diagram can be even more complex if poly(acrylic acid) (PAAc) is interpenetrated within PNIPAM network to form Interpenetrating Polymer Network (IPN) microgels that exhibit an additional pH-sensitivity. The effect of the PAAc/PNIPAM polymeric ratio on both swelling capability and dynamics is still matter of investigation. Experiments: Here we investigate the role of PAAc in the behaviour of IPN microgels across the volume phase transition through dynamic light scattering (DLS), transmission electron microscopy (TEM) and electrophoretic measurements as a function of microgel concentration and pH. Findings: Our results highlight that aggregation is favored at increasing weight concentration, PAAc content and pH and that a crossover PAAc content C*_{PAAc} exists above which the ionic charges on the microgel become relevant. Moreover we show that the softness of IPN microgels can be tuned ad hoc by changing the PAAc/PNIPAM ratio. These findings provide new insights into the possibility to control experimentally aggregation properties, charge and softness of IPN microgels by varying PAAc content.Comment: preprint versio

    A phase separation in diluted Laponite suspensions: evidence of empty liquid and equilibrium gel states

    Full text link
    The relevance of anisotropic interactions in colloidal systems has recently emerged in the context of rational design of novel soft materials. Theoretical studies have predicted the possibility of a gas-liquid phase separation confined at low densities and the formation of empty liquids and equilibrium gels in low-valence systems. Here we provide experimental evidence of this scenario in Laponite, a complex colloidal clay with discotic shape and anisotropic interactions. We also report simulations of a patchy model for Laponite platelets, able to reproduce the observed experimental phase diagram and structural properties, confirming the crucial role of the reduced valence

    Molecular mechanisms driving the microgels behaviour: a Raman spectroscopy and Dynamic Light Scattering study

    Full text link
    Responsive microgels based on poly(N-isopropylacrylamide) (PNIPAM) exhibit peculiar behaviours due to the competition between the hydrophilic and hydrophobic interactions of the constituent networks. The interpenetration of poly-acrilic acid (PAAc), a pH-sensitive polymer, within the PNIPAM network, to form Interpenetrated Polymer Network (IPN) microgels, affects this delicate balance and the typical Volume-Phase Transition (VPT) leading to complex behaviours whose molecular nature is still completely unexplored. Here we investigate the molecular mechanism driving the VPT and its influence on particle aggregation for PNIPAM/PAAc IPN microgels by the joint use of Dynamic Light Scattering and Raman Spectroscopy. Our results highlight that PNIPAM hydrophobicity is enhanced by the interpenetration of PAAc promoting interparticle interactions, a crossover concentration is found above which aggregation phenomena become relevant. Moreover we find that, at variance with PNIPAM, for IPN microgels a double-step molecular mechanisms occurs upon crossing the VPT, the first involving the coil-to-globule transition typical of PNIPAM and the latter associated to PAAc steric hindrance.Comment: preprint versio

    Glass and Jamming Rheology in Soft Particles Made of PNIPAM and Polyacrylic Acid

    Get PDF
    The phase behaviour of soft colloids has attracted great attention due to the large variety of new phenomenologies emerging from their ability to pack at very high volume fractions. Here we report rheological measurements on interpenetrated polymer network microgels composed of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylic acid (PAAc) at fixed PAAc content as a function of weight concentration. We found three different rheological regimes characteristic of three different states: a Newtonian shear-thinning fluid, an attractive glass characterized by a yield stress, and a jamming state. We discuss the possible molecular mechanisms driving the formation of these states

    Microglia-derived microvesicles affect microglia phenotype in glioma

    Get PDF
    Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor. When MV, isolated from microglia stimulated with LPS/IFNg were brain injected in glioma-bearing mice, we observed a phenotype switch of tumor associated myeloid cells (TAMs) and a reduction of tumor size. Our findings indicate that the MV cargo, which contains upregulated transcripts for several inflammation-related genes, can transfer information in the brain of glioma bearing mice modifying microglial gene expression, reducing neuronal death and glioma invasion, thus promoting the recovery of brain homeostasis

    Local structure of temperature and pH-sensitive colloidal microgels

    Get PDF
    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition
    corecore