6 research outputs found

    The Structural Basis for Brain Health

    Get PDF
    Cardiovascular disease (CVD) remains the leading cause of mortality in the United States. Stroke and dementia are the leading causes of adult disability worldwide, and the 5th and 6th leading causes of mortality respectively in the United States. Furthermore, CVD annually accounts for approximately $330 billion in direct and indirect costs in the United States: approximately one in seven health care dollars is spent on CVD. While these diseases have different etiologies, and present with different clinical manifestations and prognosis, converging evidence increasingly supports the idea of CVD as a common pathophysiological origin of cerebrovascular disease, potentially indicating a complex interplay between brain health and cardiovascular health. In this thesis, we leverage methodological advancements in systems and computational neurosciences related to the human brain connectome to assess individual topological network organization and integrity in acute and chronic stroke cohorts, and in a non-stroke cohort with varying CV risk factor burden, using graph theory and network analysis. We propose measures that underly neuroanatomical mechanisms that constitute efficient transfer of information and brain health. We demonstrate the impact of cardiovascular risk factors on brain health, even before overt clinical manifestation, and the resulting impact on cognitive performance, and further determine the underlying pathophysiology relating white matter disease and post-stroke outcomes

    Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks

    No full text
    Many stroke survivors with aphasia in the acute period experience spontaneous recovery within the first six months after the stroke. However, approximately 30-40% sustain permanent aphasia and the factors determining incomplete recovery are unclear. Suboptimal recovery may be influenced by disruption of areas seemingly spared by the stroke due to loss of white matter connectivity and network integrity. We reconstructed individual anatomical whole-brain connectomes from 90 left hemisphere stroke survivors using diffusion MR images. We measured the modularity of the residual white matter network organization, the probability of brain regions clustering together, and the degree of fragmentation of left hemisphere networks. Greater post-stroke left hemisphere network fragmentation and higher modularity index were associated with more severe chronic aphasia, controlling for the size of the stroke lesion. Even when the left hemisphere was relatively spared, subjects with disorganized community structure had significantly worse aphasia, particularly when key temporal lobe regions were isolated into segregated modules. These results suggest that white matter integrity and disorganization of neuronal networks could be important determinants of chronic aphasia severity. Connectome white matter organization measured through modularity and other topological features could be used as a personalized variable for clinical staging and aphasia treatment planning

    Fibroblast Growth Factor23 is associated with Axonal Integrity and Neural Network Architecture in the Human Frontal Lobes

    Get PDF
    Elevated levels of FGF23 in individuals with chronic kidney disease (CKD) are associated with adverse health outcomes, such as increased mortality, large vessel disease, and reduced white matter volume, cardiovascular and cerebrovascular events. Apart from the well-known link between cardiovascular (CV) risk factors, especially diabetes and hypertension, and cerebrovascular damage, elevated FGF23 is also postulated to be associated with cerebrovascular damage independently of CKD. Elevated FGF23 predisposes to vascular calcification and is associated with vascular stiffness and endothelial dysfunction in the general population with normal renal function. These factors may lead to microangiopathic changes in the brain, cumulative ischemia, and eventually to the loss of white matter fibers. The relationship between FGF23 and brain integrity in individuals without CKD has hitherto not been investigated. In this study, we aimed to determine the association between FGF23, and white matter integrity in a cohort of 50 participants with varying degrees of CV risk burden, using high resolution structural human brain connectomes constructed from MRI diffusion images. We observed that increased FGF23 was associated with axonal loss in the frontal lobe, leading to a fragmentation of white matter network organization. This study provides the first description of the relationship between elevated levels of FGF23, white matter integrity, and brain health. We suggest a synergistic interaction of CV risk factors and FGF23 as a potentially novel determinant of brain health

    Deep Learning for Daily Monitoring of Parkinson’s Disease Outside the Clinic Using Wearable Sensors

    No full text
    Now that wearable sensors have become more commonplace, it is possible to monitor individual healthcare-related activity outside the clinic, unleashing potential for early detection of events in diseases such as Parkinson’s disease (PD). However, the unsupervised and “open world” nature of this type of data collection make such applications difficult to develop. In this proof-of-concept study, we used inertial sensor data from Verily Study Watches worn by individuals for up to 23 h per day over several months to distinguish between seven subjects with PD and four without. Since motor-related PD symptoms such as bradykinesia and gait abnormalities typically present when a PD subject is walking, we initially used human activity recognition (HAR) techniques to identify walk-like activity in the unconstrained, unlabeled data. We then used these “walk-like” events to train one-dimensional convolutional neural networks (1D-CNNs) to determine the presence of PD. We report classification accuracies near 90% on single 5-s walk-like events and 100% accuracy when taking the majority vote over single-event classifications that span a duration of one day. Though based on a small cohort, this study shows the feasibility of leveraging unconstrained wearable sensor data to accurately detect the presence or absence of PD

    Different aspects of hand grip performance associated with structural connectivity of distinct sensorimotor networks in chronic stroke

    No full text
    Abstract Knowledge regarding the neural origins of distinct upper extremity impairments may guide the choice of interventions to target neural structures responsible for specific impairments. This cross‐sectional pilot study investigated whether different brain networks explain distinct aspects of hand grip performance in stroke survivors. In 22 chronic stroke survivors, hand grip performance was characterized as grip strength, reaction, relaxation times, and control of grip force magnitude and direction. In addition, their brain structural connectomes were constructed from diffusion tensor MRI. Prominent networks were identified based on a two‐step factor analysis using the number of streamlines among brain regions relevant to sensorimotor function. We used regression models to estimate the predictive value of sensorimotor network connectivity for hand grip performance measures while controlling for stroke lesion volumes. Each hand grip performance measure correlated with the connectivity of distinct brain sensorimotor networks. These results suggest that different brain networks may be responsible for different aspects of hand grip performance, which leads to varying clinical presentations of upper extremity impairment following stroke. Understanding the brain network correlates for different hand grip performances may facilitate the development of personalized rehabilitation interventions to directly target the responsible brain network for specific impairments in individual patients, thus improving outcomes
    corecore