1,820 research outputs found

    Point-of-care versus central testing of hemoglobin during large volume blood transfusion.

    Get PDF
    BACKGROUND: Point-of-care (POC) hemoglobin testing has the potential to revolutionize massive transfusion strategies. No prior studies have compared POC and central laboratory testing of hemoglobin in patients undergoing massive transfusions. METHODS: We retrospectively compared the results of our point-of-care hemoglobin test (EPOCÂź) to our core laboratory complete blood count (CBC) hemoglobin test (Sysmex XE-5000ℱ) in patients undergoing massive transfusion protocols (MTP) for hemorrhage. One hundred seventy paired samples from 90 patients for whom MTP was activated were collected at a single, tertiary care hospital between 10/2011 and 10/2017. Patients had both an EPOCÂź and CBC hemoglobin performed within 30 min of each other during the MTP. We assessed the accuracy of EPOCÂź hemoglobin testing using two variables: interchangeability and clinically significant differences from the CBC. The Clinical Laboratory Improvement Amendments (CLIA) proficiency testing criteria defined interchangeability for measurements. Clinically significant differences between the tests were defined by an expert panel. We examined whether these relationships changed as a function of the hemoglobin measured by the EPOCÂź and specific patient characteristics. RESULTS: Fifty one percent (86 of 170) of paired samples\u27 hemoglobin results had an absolute difference of ≀7 and 73% (124 of 170) fell within ±1 g/dL of each other. The mean difference between EPOCÂź and CBC hemoglobin had a bias of - 0.268 g/dL (p = 0.002). When the EPOCÂź hemoglobin was \u3c 7 g/dL, 30% of the hemoglobin values were within ±7, and 57% were within ±1 g/dL. When the measured EPOCÂź hemoglobin was ≄7 g/dL, 55% of the EPOCÂź and CBC hemoglobin values were within ±7, and 76% were within ±1 g/dL. EPOCÂź and CBC hemoglobin values that were within ±1 g/dL varied by patient population: 77% for cardiac surgery, 58% for general surgery, and 72% for non-surgical patients. CONCLUSIONS: The EPOCÂź device had minor negative bias, was not interchangeable with the CBC hemoglobin, and was less reliable when the EPOCÂź value was \u3c 7 g/dL. Clinicians must consider speed versus accuracy, and should check a CBC within 30 min as confirmation when the EPOCÂź hemoglobin is \u3c 7 g/dL until further prospective trials are performed in this population

    Characterization of Biochars Produced From Peanut Hulls and Pine Wood with Different Pyrolysis Conditions

    Get PDF
    Background Application of modern biomass pyrolysis methods for production of biofuels and biochar is potentially a significant approach to enable global carbon capture and sequestration. To realize this potential, it is essential to develop methods that produce biochar with the characteristics needed for effective soil amendment. Methods Biochar materials were produced from peanut hulls and pine wood with different pyrolysis conditions, then characterized by cation exchange (CEC) capacity assays, nitrogen adsorption–desorption isotherm measurements, micro/nanostructural imaging, infrared spectra and elemental analyses. Results Under a standard assay condition of pH 8.5, the CEC values of the peanut hull-derived biochar materials, ranging from 6.22 to 66.56 cmol kg−1, are significantly higher than those of the southern yellow pine-derived biochar, which are near zero or negative. The biochar produced from peanut hulls with a steam activation process yielded the highest CEC value of 66.56 cmol kg−1, which is about 5 times higher than the cation exchange capacity (12.51 cmol kg−1) of a reference soil sample. Notably, biochar produced from peanut hulls with batch barrel retort pyrolysis also has a much higher CEC value (60.12 cmol kg−1) than that (12.45 cmol kg−1) from Eprida’s H2-producing continuous steam injection process. The CEC values were shown to correlate well with the ratios of oxygen atoms to carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio in a biochar material may indicate the presence of more hydroxyl, carboxylate, and carbonyl groups that contribute to a higher CEC value for the biochar product. In addition, the increase in surface area can also play a role in increasing the CEC value of biochar, as in the case of the steam activation char. Conclusion Comparison of characterization results indicated that CEC value is determined not only by the type of the source biomass materials but also by the pyrolysis conditions. Biochar with the desirable characteristics of extremely high surface area (700 m2/g) and cation exchange capacity (\u3e 60 cmol kg) was created through steam activation

    Understanding young people's transitions in university halls through space and time

    Get PDF
    This article contributes to the theoretical discussion about young people's transitions through space and time. Space and time are complex overarching concepts that have creative potential in deepening understanding of transition. The focus of this research is young people's experiences of communal living in university halls. It is argued that particular space-time concepts draw attention to different facets of experience and in combination deepen the understanding of young people's individual and collective transitions. The focus of the article is the uses of the space-time concepts 'routine', 'representation', 'rhythm' and 'ritual' to research young people's experiences. The article draws on research findings from two studies in the North of England. © 2010 SAGE Publications

    Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    Get PDF
    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up-regulated genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase family 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 (Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes

    Reflections on the Cost of Low-Cost Whole Genome Sequencing: Framing the Health Policy Debate

    Get PDF
    The cost of whole genome sequencing is dropping rapidly. There has been a great deal of enthusiasm about the potential for this technological advance to transform clinical care. Given the interest and significant investment in genomics, this seems an ideal time to consider what the evidence tells us about potential benefits and harms, particularly in the context of health care policy. The scale and pace of adoption of this powerful new technology should be driven by clinical need, clinical evidence, and a commitment to put patients at the centre of health care policy

    Intramolecular epoxide ring opening cyclisation reactions involving guanidines

    Get PDF
    The cyclisation of N-allyl- and N-homoallylguanidines using DMDO leading to the formation of novel 5- and 6-membered guanidine heterocycles is reported. Several of the products formed displayed weak inhibition of glycosidase enzymes

    Relevance, Pathogenesis, and Testing Algorithm for Mismatch Repair–Defective Colorectal Carcinomas

    Get PDF
    Loss-of-function defects in DNA mismatch repair (MMR), which manifest as high levels of microsatellite instability (MSI), occur in approximately 15% of all colorectal carcinomas (CRCs). This molecular subset of CRC characterizes patients with better stage-specific prognoses who experience no benefit from 5-fluorouracil chemotherapy. Most MMR-deficient (dMMR) CRCs are sporadic, but 15% to 20% are due to inherited predisposition (Lynch syndrome). High penetrance of CRCs in germline MMR gene mutation carriers emphasizes the importance of accurate diagnosis of Lynch syndrome carriers. Family-based (Amsterdam), patient/family-based (Bethesda), morphology-based, microsatellite-based, and IHC-based screening criteria do not individually detect all germline mutation carriers. These limitations support the use of multiple concurrent tests and the screening of all patients with newly diagnosed CRC. This approach is resource intensive but would increase detection of inherited and de novo germline mutations to guide family screening. Although CRC prognosis and prediction of 5-fluorouracil response are similar in both the Lynch and sporadic dMMR subgroups, these subgroups differ significantly with regard to the implications for family members. We recommend that new CRCs should be classified into sporadic MMR-proficient, sporadic dMMR, or Lynch dMMR subgroups. The concurrent use of MSI testing, MMR protein IHC, and BRAF c.1799T>A mutation analysis would detect almost all dMMR CRCs, would classify 94% of all new CRCs into these MMR subgroups, and would guide secondary molecular testing of the remainder
    • 

    corecore